ColossalAI/tests/test_auto_parallel/test_bcast_matmul.py

53 lines
1.7 KiB
Python

import torch
from torch.fx import GraphModule
import torch.nn as nn
import pytest
from colossalai.auto_parallel.solver.options import SolverOptions
from colossalai.auto_parallel.solver.strategies_constructor import StrategiesConstructor
from colossalai.fx.tracer.tracer import ColoTracer
from colossalai.device.device_mesh import DeviceMesh
class MatmulModel(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x1, x2):
x = torch.matmul(x1, x2)
return x
def test_conv_handler():
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
tracer = ColoTracer()
model = MatmulModel()
input_sample = {'x1': torch.rand(4, 4, 8).to('meta'), 'x2': torch.rand(4, 1, 8, 4).to('meta')}
# graph():
# %x1 : torch.Tensor [#users=1] = placeholder[target=x1]
# %x2 : torch.Tensor [#users=1] = placeholder[target=x2]
# %matmul : [#users=1] = call_function[target=torch.matmul](args = (%x1, %x2), kwargs = {})
# return matmul
graph = tracer.trace(root=model, meta_args=input_sample)
gm = GraphModule(model, graph, model.__class__.__name__)
# [x1, x2, matmul, output]
nodes = [node for node in gm.graph.nodes]
solver_options = SolverOptions(fast=True)
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
strategy_map = strategies_constructor.strategy_map
matmul_strategies = strategy_map[nodes[2]]
assert len(matmul_strategies) == 30
if __name__ == '__main__':
test_conv_handler()