ColossalAI/tests/kit/model_zoo/registry.py

69 lines
2.2 KiB
Python

#!/usr/bin/env python
from dataclasses import dataclass
from typing import Callable
__all__ = ['ModelZooRegistry', 'ModelAttributem', 'model_zoo']
@dataclass
class ModelAttribute:
"""
Attributes of a model.
Args:
has_control_flow (bool): Whether the model contains branching in its forward method.
has_stochastic_depth_prob (bool): Whether the model contains stochastic depth probability. Often seen in the torchvision models.
"""
has_control_flow: bool = False
has_stochastic_depth_prob: bool = False
class ModelZooRegistry(dict):
"""
A registry to map model names to model and data generation functions.
"""
def register(self,
name: str,
model_fn: Callable,
data_gen_fn: Callable,
output_transform_fn: Callable,
model_attribute: ModelAttribute = None):
"""
Register a model and data generation function.
Examples:
>>> # Register
>>> model_zoo = ModelZooRegistry()
>>> model_zoo.register('resnet18', resnet18, resnet18_data_gen)
>>> # Run the model
>>> data = resnresnet18_data_gen() # do not input any argument
>>> model = resnet18() # do not input any argument
>>> out = model(**data)
Args:
name (str): Name of the model.
model_fn (callable): A function that returns a model. **It must not contain any arguments.**
output_transform_fn (callable): A function that transforms the output of the model into Dict.
data_gen_fn (callable): A function that returns a data sample in the form of Dict. **It must not contain any arguments.**
model_attribute (ModelAttribute): Attributes of the model. Defaults to None.
"""
self[name] = (model_fn, data_gen_fn, output_transform_fn, model_attribute)
def get_sub_registry(self, keyword: str):
"""
Get a sub registry with models that contain the keyword.
Args:
keyword (str): Keyword to filter models.
"""
new_dict = dict()
for k, v in self.items():
if keyword in k:
new_dict[k] = v
return new_dict
model_zoo = ModelZooRegistry()