ColossalAI/examples/tutorial/sequence_parallel/model/layers/linear.py

64 lines
2.3 KiB
Python

import torch
import torch.nn as nn
from torch.nn import Parameter
import torch.nn.functional as F
import torch.nn.init as init
class Linear(nn.Module):
"""Linear layer with column parallelism.
The linear layer is defined as Y = XA + b. A is parallelized along
its second dimension as A = [A_1, ..., A_p].
Arguments:
input_size: first dimension of matrix A.
output_size: second dimension of matrix A.
bias: If true, add bias
init_method: method to initialize weights. Note that bias is always set
to zero.
stride: For the strided linear layers.
keep_master_weight_for_test: This was added for testing and should be
set to False. It returns the master weights
used for initialization.
skip_bias_add: This was added to enable performance optimations where bias
can be fused with other elementwise operations. we skip
adding bias but instead return it.
"""
def __init__(self,
input_size,
output_size,
bias=True,
skip_bias_add=False):
super(Linear, self).__init__()
# Keep input parameters
self.input_size = input_size
self.output_size = output_size
self.skip_bias_add = skip_bias_add
self.weight = Parameter(torch.empty(self.output_size,
self.input_size,
))
init.normal_(self.weight)
if bias:
self.bias = Parameter(torch.empty(self.output_size))
# Always initialize bias to zero.
with torch.no_grad():
self.bias.zero_()
else:
self.register_parameter('bias', None)
def forward(self, input_):
# Matrix multiply.
bias = self.bias if not self.skip_bias_add else None
output = F.linear(input_, self.weight, bias)
if self.skip_bias_add:
return output, self.bias
else:
return output
def __repr__(self):
return f'Linear(in_features={self.input_size}, out_features={self.output_size}, ' + \
f'bias={self.bias is not None}, skip_bias_add={self.skip_bias_add})'