ColossalAI/examples/tutorial/new_api/torch_ddp/eval.py

49 lines
1.5 KiB
Python

import argparse
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--epoch', type=int, default=80, help="resume from the epoch's checkpoint")
parser.add_argument('-c', '--checkpoint', type=str, default='./checkpoint', help="checkpoint directory")
args = parser.parse_args()
# ==============================
# Prepare Test Dataset
# ==============================
# CIFAR-10 dataset
test_dataset = torchvision.datasets.CIFAR10(root='./data/', train=False, transform=transforms.ToTensor())
# Data loader
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=128, shuffle=False)
# ==============================
# Load Model
# ==============================
model = torchvision.models.resnet18(num_classes=10).cuda()
state_dict = torch.load(f'{args.checkpoint}/model_{args.epoch}.pth')
model.load_state_dict(state_dict)
# ==============================
# Run Evaluation
# ==============================
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
images = images.cuda()
labels = labels.cuda()
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))