mirror of https://github.com/hpcaitech/ColossalAI
158 lines
5.6 KiB
Python
158 lines
5.6 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
from torch.cuda.amp import custom_bwd, custom_fwd
|
|
from torch.nn.functional import cross_entropy
|
|
from torch.nn.modules.loss import _Loss
|
|
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.legacy.nn.layer.parallel_2d import reduce_by_batch_2d, split_batch_2d
|
|
from colossalai.legacy.nn.layer.parallel_2d._utils import assert_summa_initialization
|
|
from colossalai.legacy.registry import LOSSES
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
@LOSSES.register_module
|
|
class CrossEntropyLoss2D(_Loss):
|
|
r"""Cross entropy loss for 2D parallelism
|
|
|
|
Args:
|
|
reduction (bool, optional): whether to average the loss, defaults to True.
|
|
|
|
The ``args`` and ``kwargs`` should include parameters below:
|
|
::
|
|
|
|
weight (Tensor, optional)
|
|
size_average (bool, optional)
|
|
ignore_index (int, optional)
|
|
reduce (bool, optional)
|
|
label_smoothing (float, optional)
|
|
|
|
More details about ``args``, ``kwargs`` and ``torch.nn.functional.cross_entropy`` could be found in
|
|
`Cross_entropy <https://pytorch.org/docs/stable/generated/torch.nn.functional.cross_entropy.html#torch.nn.functional.cross_entropy>`_.
|
|
"""
|
|
|
|
def __init__(self, reduction=True, *args, **kwargs):
|
|
super().__init__()
|
|
assert_summa_initialization()
|
|
self.reduction_mean = reduction
|
|
self.loss_args = args
|
|
self.loss_kwargs = kwargs
|
|
|
|
def forward(self, logits, targets):
|
|
"""Calculate loss between logits and targets.
|
|
|
|
Args:
|
|
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
|
|
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
|
|
|
|
Returns:
|
|
float: the loss between logits and targets.
|
|
"""
|
|
targets = split_batch_2d(targets)
|
|
loss = cross_entropy(logits, targets, reduction='none', *self.loss_args, **self.loss_kwargs)
|
|
if self.reduction_mean:
|
|
loss = loss.mean()
|
|
loss = reduce_by_batch_2d(loss, True)
|
|
return loss
|
|
|
|
|
|
class _VocabParallelCrossEntropy2D(torch.autograd.Function):
|
|
### Modified based on megatron.mpu.cross_entropy ###
|
|
|
|
@staticmethod
|
|
@custom_fwd(cast_inputs=torch.float32)
|
|
def forward(ctx, logits, targets):
|
|
# logits: [b/q, h/q]
|
|
# labels: [b/q]
|
|
# loss: [b/q]
|
|
# vocab_parallel_logits: [b/q, s, v/q]
|
|
# target: [b/q, s]
|
|
logits_max = torch.max(logits, dim=-1)[0]
|
|
torch.distributed.all_reduce(logits_max,
|
|
op=torch.distributed.ReduceOp.MAX,
|
|
group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
|
|
# Subtract the maximum value.
|
|
# vocab_parallel_logits.sub_(logits_max.unsqueeze(dim=-1))
|
|
logits = logits - logits_max.unsqueeze(dim=-1)
|
|
|
|
vocab_size = logits.size(-1)
|
|
rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
|
|
vocab_start = rank * (vocab_size)
|
|
vocab_end = (rank + 1) * (vocab_size) - 1
|
|
|
|
target_mask = (targets < vocab_start) | (targets > vocab_end)
|
|
|
|
masked_target = targets.clone() - vocab_start
|
|
masked_target[target_mask] = 0
|
|
arange_1d = torch.arange(
|
|
start=0,
|
|
end=logits.size()[0],
|
|
)
|
|
predicted_logits = logits[arange_1d, masked_target]
|
|
predicted_logits[target_mask] = 0.
|
|
dist.all_reduce(predicted_logits, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
|
|
|
|
exp_logits = torch.exp(logits)
|
|
sum_exp_logits = exp_logits.sum(dim=1)
|
|
dist.all_reduce(sum_exp_logits, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
|
|
|
|
loss = torch.log(sum_exp_logits) - predicted_logits
|
|
|
|
exp_logits.div_(sum_exp_logits.unsqueeze(dim=-1))
|
|
ctx.save_for_backward(exp_logits, target_mask, masked_target)
|
|
|
|
return loss
|
|
|
|
@staticmethod
|
|
@custom_bwd
|
|
def backward(ctx, output_grad):
|
|
# Retrieve tensors from the forward path.
|
|
softmax, target_mask, masked_target = ctx.saved_tensors
|
|
|
|
# All the inputs have softmax as their gradient.
|
|
grad_input = softmax
|
|
|
|
# For simplicity, work with the 2D gradient.
|
|
partition_vocab_size = softmax.size()[-1]
|
|
grad_2d = grad_input.view(-1, partition_vocab_size)
|
|
|
|
# Add the gradient from matching classes.
|
|
arange_1d = torch.arange(start=0, end=grad_2d.size()[0], device=get_current_device())
|
|
grad_2d[arange_1d, masked_target] -= (1.0 - target_mask.view(-1).float())
|
|
|
|
# Finally elementwise multiplication with the output gradients.
|
|
grad_input.mul_(output_grad.unsqueeze(dim=-1))
|
|
|
|
return grad_input, None
|
|
|
|
|
|
@LOSSES.register_module
|
|
class VocabParallelCrossEntropyLoss2D(_Loss):
|
|
"""Vocab parallel cross entropy loss for 2D parallelism.
|
|
|
|
Args:
|
|
reduction (bool, optional): whether to average the loss, defaults to True.
|
|
"""
|
|
|
|
def __init__(self, reduction=True):
|
|
super().__init__()
|
|
self.reduction_mean = reduction
|
|
|
|
def forward(self, logits, targets):
|
|
"""Calculate loss between logits and targets.
|
|
|
|
Args:
|
|
logits (:class:`torch.tensor`): Predicted unnormalized scores (often referred to as logits).
|
|
targets (:class:`torch.tensor`): Ground truth class indices or class probabilities.
|
|
"""
|
|
targets = split_batch_2d(targets)
|
|
loss = _VocabParallelCrossEntropy2D.apply(
|
|
logits,
|
|
targets,
|
|
)
|
|
if self.reduction_mean:
|
|
loss = loss.mean()
|
|
loss = reduce_by_batch_2d(loss, True)
|
|
return loss
|