mirror of https://github.com/hpcaitech/ColossalAI
1440 lines
56 KiB
Python
1440 lines
56 KiB
Python
"""
|
||
This code is copied from https://huggingface.co/THUDM/chatglm-6b/resolve/main/modeling_chatglm.py
|
||
"""
|
||
|
||
""" PyTorch ChatGLM model. """
|
||
|
||
import math
|
||
import copy
|
||
import os
|
||
import warnings
|
||
import re
|
||
import sys
|
||
|
||
import torch
|
||
import torch.utils.checkpoint
|
||
import torch.nn.functional as F
|
||
from torch import nn
|
||
from torch.nn import CrossEntropyLoss, LayerNorm
|
||
from torch.nn.utils import skip_init
|
||
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
||
|
||
from transformers.utils import (
|
||
add_code_sample_docstrings,
|
||
add_start_docstrings,
|
||
add_start_docstrings_to_model_forward,
|
||
)
|
||
from transformers.modeling_outputs import (
|
||
BaseModelOutputWithPast,
|
||
CausalLMOutputWithPast,
|
||
BaseModelOutputWithPastAndCrossAttentions,
|
||
)
|
||
from transformers.modeling_utils import PreTrainedModel
|
||
from transformers.utils import logging
|
||
from transformers.generation.logits_process import LogitsProcessor
|
||
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
||
|
||
from .configuration_chatglm import ChatGLMConfig
|
||
|
||
# flags required to enable jit fusion kernels
|
||
|
||
if sys.platform != 'darwin':
|
||
torch._C._jit_set_profiling_mode(False)
|
||
torch._C._jit_set_profiling_executor(False)
|
||
torch._C._jit_override_can_fuse_on_cpu(True)
|
||
torch._C._jit_override_can_fuse_on_gpu(True)
|
||
|
||
logger = logging.get_logger(__name__)
|
||
|
||
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
||
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
||
|
||
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
||
"THUDM/chatglm-6b",
|
||
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
||
]
|
||
|
||
|
||
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
||
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
||
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
||
scores.zero_()
|
||
scores[..., 5] = 5e4
|
||
return scores
|
||
|
||
|
||
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
||
"""Load tf checkpoints in a pytorch model."""
|
||
try:
|
||
import re
|
||
|
||
import numpy as np
|
||
import tensorflow as tf
|
||
except ImportError:
|
||
logger.error(
|
||
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
||
"https://www.tensorflow.org/install/ for installation instructions."
|
||
)
|
||
raise
|
||
tf_path = os.path.abspath(tf_checkpoint_path)
|
||
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
||
# Load weights from TF model
|
||
init_vars = tf.train.list_variables(tf_path)
|
||
names = []
|
||
arrays = []
|
||
for name, shape in init_vars:
|
||
logger.info(f"Loading TF weight {name} with shape {shape}")
|
||
array = tf.train.load_variable(tf_path, name)
|
||
names.append(name)
|
||
arrays.append(array)
|
||
|
||
for name, array in zip(names, arrays):
|
||
name = name.split("/")
|
||
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
||
# which are not required for using pretrained model
|
||
if any(
|
||
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
||
for n in name
|
||
):
|
||
logger.info(f"Skipping {'/'.join(name)}")
|
||
continue
|
||
pointer = model
|
||
for m_name in name:
|
||
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
||
scope_names = re.split(r"_(\d+)", m_name)
|
||
else:
|
||
scope_names = [m_name]
|
||
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
||
pointer = getattr(pointer, "weight")
|
||
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
||
pointer = getattr(pointer, "bias")
|
||
elif scope_names[0] == "output_weights":
|
||
pointer = getattr(pointer, "weight")
|
||
elif scope_names[0] == "squad":
|
||
pointer = getattr(pointer, "classifier")
|
||
else:
|
||
try:
|
||
pointer = getattr(pointer, scope_names[0])
|
||
except AttributeError:
|
||
logger.info(f"Skipping {'/'.join(name)}")
|
||
continue
|
||
if len(scope_names) >= 2:
|
||
num = int(scope_names[1])
|
||
pointer = pointer[num]
|
||
if m_name[-11:] == "_embeddings":
|
||
pointer = getattr(pointer, "weight")
|
||
elif m_name == "kernel":
|
||
array = np.transpose(array)
|
||
try:
|
||
assert (
|
||
pointer.shape == array.shape
|
||
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
||
except AssertionError as e:
|
||
e.args += (pointer.shape, array.shape)
|
||
raise
|
||
logger.info(f"Initialize PyTorch weight {name}")
|
||
pointer.data = torch.from_numpy(array)
|
||
return model
|
||
|
||
|
||
class PrefixEncoder(torch.nn.Module):
|
||
"""
|
||
The torch.nn model to encode the prefix
|
||
Input shape: (batch-size, prefix-length)
|
||
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
||
"""
|
||
|
||
def __init__(self, config):
|
||
super().__init__()
|
||
self.prefix_projection = config.prefix_projection
|
||
if self.prefix_projection:
|
||
# Use a two-layer MLP to encode the prefix
|
||
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
||
self.trans = torch.nn.Sequential(
|
||
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
||
torch.nn.Tanh(),
|
||
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
||
)
|
||
else:
|
||
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
||
|
||
def forward(self, prefix: torch.Tensor):
|
||
if self.prefix_projection:
|
||
prefix_tokens = self.embedding(prefix)
|
||
past_key_values = self.trans(prefix_tokens)
|
||
else:
|
||
past_key_values = self.embedding(prefix)
|
||
return past_key_values
|
||
|
||
|
||
@torch.jit.script
|
||
def gelu_impl(x):
|
||
"""OpenAI's gelu implementation."""
|
||
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
||
(1.0 + 0.044715 * x * x)))
|
||
|
||
|
||
def gelu(x):
|
||
return gelu_impl(x)
|
||
|
||
|
||
class RotaryEmbedding(torch.nn.Module):
|
||
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
||
super().__init__()
|
||
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
||
inv_freq = inv_freq.half()
|
||
self.learnable = learnable
|
||
if learnable:
|
||
self.inv_freq = torch.nn.Parameter(inv_freq)
|
||
self.max_seq_len_cached = None
|
||
else:
|
||
self.register_buffer('inv_freq', inv_freq)
|
||
self.max_seq_len_cached = None
|
||
self.cos_cached = None
|
||
self.sin_cached = None
|
||
self.precision = precision
|
||
|
||
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
||
error_msgs):
|
||
pass
|
||
|
||
def forward(self, x, seq_dim=1, seq_len=None):
|
||
if seq_len is None:
|
||
seq_len = x.shape[seq_dim]
|
||
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
||
self.max_seq_len_cached = None if self.learnable else seq_len
|
||
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
||
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
||
if self.precision == torch.bfloat16:
|
||
emb = emb.float()
|
||
|
||
# [sx, 1 (b * np), hn]
|
||
cos_cached = emb.cos()[:, None, :]
|
||
sin_cached = emb.sin()[:, None, :]
|
||
if self.precision == torch.bfloat16:
|
||
cos_cached = cos_cached.bfloat16()
|
||
sin_cached = sin_cached.bfloat16()
|
||
if self.learnable:
|
||
return cos_cached, sin_cached
|
||
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
||
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
||
|
||
def _apply(self, fn):
|
||
if self.cos_cached is not None:
|
||
self.cos_cached = fn(self.cos_cached)
|
||
if self.sin_cached is not None:
|
||
self.sin_cached = fn(self.sin_cached)
|
||
return super()._apply(fn)
|
||
|
||
|
||
def rotate_half(x):
|
||
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
||
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
||
|
||
|
||
@torch.jit.script
|
||
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
||
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
||
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
||
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
||
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
||
return q, k
|
||
|
||
|
||
def attention_fn(
|
||
self,
|
||
query_layer,
|
||
key_layer,
|
||
value_layer,
|
||
attention_mask,
|
||
hidden_size_per_partition,
|
||
layer_id,
|
||
layer_past=None,
|
||
scaling_attention_score=True,
|
||
use_cache=False,
|
||
):
|
||
if layer_past is not None:
|
||
past_key, past_value = layer_past[0], layer_past[1]
|
||
key_layer = torch.cat((past_key, key_layer), dim=0)
|
||
value_layer = torch.cat((past_value, value_layer), dim=0)
|
||
|
||
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
||
seq_len, b, nh, hidden_size = key_layer.shape
|
||
|
||
if use_cache:
|
||
present = (key_layer, value_layer)
|
||
else:
|
||
present = None
|
||
|
||
query_key_layer_scaling_coeff = float(layer_id + 1)
|
||
if scaling_attention_score:
|
||
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
||
|
||
# ===================================
|
||
# Raw attention scores. [b, np, s, s]
|
||
# ===================================
|
||
|
||
# [b, np, sq, sk]
|
||
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
||
|
||
# [sq, b, np, hn] -> [sq, b * np, hn]
|
||
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
||
# [sk, b, np, hn] -> [sk, b * np, hn]
|
||
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
||
|
||
matmul_result = torch.zeros(
|
||
1, 1, 1,
|
||
dtype=query_layer.dtype,
|
||
device=query_layer.device,
|
||
)
|
||
|
||
matmul_result = torch.baddbmm(
|
||
matmul_result,
|
||
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
||
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
||
beta=0.0,
|
||
alpha=1.0,
|
||
)
|
||
|
||
# change view to [b, np, sq, sk]
|
||
attention_scores = matmul_result.view(*output_size)
|
||
|
||
if self.scale_mask_softmax:
|
||
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
||
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
||
else:
|
||
if not (attention_mask == 0).all():
|
||
# if auto-regressive, skip
|
||
attention_scores.masked_fill_(attention_mask, -10000.0)
|
||
dtype = attention_scores.dtype
|
||
attention_scores = attention_scores.float()
|
||
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
||
|
||
attention_probs = F.softmax(attention_scores, dim=-1)
|
||
|
||
attention_probs = attention_probs.type(dtype)
|
||
|
||
# =========================
|
||
# Context layer. [sq, b, hp]
|
||
# =========================
|
||
|
||
# value_layer -> context layer.
|
||
# [sk, b, np, hn] --> [b, np, sq, hn]
|
||
|
||
# context layer shape: [b, np, sq, hn]
|
||
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
||
|
||
# change view [sk, b * np, hn]
|
||
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
||
|
||
# change view [b * np, sq, sk]
|
||
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
||
|
||
# matmul: [b * np, sq, hn]
|
||
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
||
|
||
# change view [b, np, sq, hn]
|
||
context_layer = context_layer.view(*output_size)
|
||
|
||
# [b, np, sq, hn] --> [sq, b, np, hn]
|
||
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
||
|
||
# [sq, b, np, hn] --> [sq, b, hp]
|
||
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
||
context_layer = context_layer.view(*new_context_layer_shape)
|
||
|
||
outputs = (context_layer, present, attention_probs)
|
||
|
||
return outputs
|
||
|
||
|
||
def default_init(cls, *args, **kwargs):
|
||
return cls(*args, **kwargs)
|
||
|
||
|
||
class SelfAttention(torch.nn.Module):
|
||
def __init__(self, hidden_size, num_attention_heads,
|
||
layer_id, hidden_size_per_attention_head=None, bias=True,
|
||
params_dtype=torch.float, position_encoding_2d=True, empty_init=True):
|
||
if empty_init:
|
||
init_method = skip_init
|
||
else:
|
||
init_method = default_init
|
||
super(SelfAttention, self).__init__()
|
||
|
||
self.layer_id = layer_id
|
||
self.hidden_size = hidden_size
|
||
self.hidden_size_per_partition = hidden_size
|
||
self.num_attention_heads = num_attention_heads
|
||
self.num_attention_heads_per_partition = num_attention_heads
|
||
self.position_encoding_2d = position_encoding_2d
|
||
self.rotary_emb = RotaryEmbedding(
|
||
self.hidden_size // (self.num_attention_heads * 2)
|
||
if position_encoding_2d
|
||
else self.hidden_size // self.num_attention_heads,
|
||
base=10000,
|
||
precision=torch.half,
|
||
learnable=False,
|
||
)
|
||
|
||
self.scale_mask_softmax = None
|
||
|
||
if hidden_size_per_attention_head is None:
|
||
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
||
else:
|
||
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
||
|
||
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
||
|
||
# Strided linear layer.
|
||
self.query_key_value = init_method(
|
||
torch.nn.Linear,
|
||
hidden_size,
|
||
3 * self.inner_hidden_size,
|
||
bias=bias,
|
||
dtype=params_dtype,
|
||
)
|
||
|
||
self.dense = init_method(
|
||
torch.nn.Linear,
|
||
self.inner_hidden_size,
|
||
hidden_size,
|
||
bias=bias,
|
||
dtype=params_dtype,
|
||
)
|
||
|
||
@staticmethod
|
||
def attention_mask_func(attention_scores, attention_mask):
|
||
attention_scores.masked_fill_(attention_mask, -10000.0)
|
||
return attention_scores
|
||
|
||
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
||
contiguous_split_chunks=False):
|
||
"""Split a tensor along its last dimension.
|
||
Arguments:
|
||
tensor: input tensor.
|
||
num_partitions: number of partitions to split the tensor
|
||
contiguous_split_chunks: If True, make each chunk contiguous
|
||
in memory.
|
||
"""
|
||
# Get the size and dimension.
|
||
last_dim = tensor.dim() - 1
|
||
last_dim_size = tensor.size()[last_dim] // num_partitions
|
||
# Split.
|
||
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
||
# Note: torch.split does not create contiguous tensors by default.
|
||
if contiguous_split_chunks:
|
||
return tuple(chunk.contiguous() for chunk in tensor_list)
|
||
|
||
return tensor_list
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
position_ids,
|
||
attention_mask: torch.Tensor,
|
||
layer_id,
|
||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||
use_cache: bool = False,
|
||
output_attentions: bool = False,
|
||
):
|
||
"""
|
||
hidden_states: [seq_len, batch, hidden_size]
|
||
attention_mask: [(1, 1), seq_len, seq_len]
|
||
"""
|
||
|
||
# [seq_len, batch, 3 * hidden_size]
|
||
mixed_raw_layer = self.query_key_value(hidden_states)
|
||
|
||
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
||
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
||
self.num_attention_heads_per_partition,
|
||
3 * self.hidden_size_per_attention_head,
|
||
)
|
||
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
||
|
||
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
||
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
||
|
||
if self.position_encoding_2d:
|
||
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
||
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
||
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
||
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
||
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
||
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
||
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
||
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
||
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
||
else:
|
||
position_ids = position_ids.transpose(0, 1)
|
||
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
||
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
||
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
||
|
||
# [seq_len, batch, hidden_size]
|
||
context_layer, present, attention_probs = attention_fn(
|
||
self=self,
|
||
query_layer=query_layer,
|
||
key_layer=key_layer,
|
||
value_layer=value_layer,
|
||
attention_mask=attention_mask,
|
||
hidden_size_per_partition=self.hidden_size_per_partition,
|
||
layer_id=layer_id,
|
||
layer_past=layer_past,
|
||
use_cache=use_cache
|
||
)
|
||
|
||
output = self.dense(context_layer)
|
||
|
||
outputs = (output, present)
|
||
|
||
if output_attentions:
|
||
outputs += (attention_probs,)
|
||
|
||
return outputs # output, present, attention_probs
|
||
|
||
|
||
class GEGLU(torch.nn.Module):
|
||
def __init__(self):
|
||
super().__init__()
|
||
self.activation_fn = F.gelu
|
||
|
||
def forward(self, x):
|
||
# dim=-1 breaks in jit for pt<1.10
|
||
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
||
return x1 * self.activation_fn(x2)
|
||
|
||
|
||
class GLU(torch.nn.Module):
|
||
def __init__(self, hidden_size, inner_hidden_size=None,
|
||
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
|
||
super(GLU, self).__init__()
|
||
if empty_init:
|
||
init_method = skip_init
|
||
else:
|
||
init_method = default_init
|
||
self.layer_id = layer_id
|
||
self.activation_func = activation_func
|
||
|
||
# Project to 4h.
|
||
self.hidden_size = hidden_size
|
||
if inner_hidden_size is None:
|
||
inner_hidden_size = 4 * hidden_size
|
||
self.inner_hidden_size = inner_hidden_size
|
||
self.dense_h_to_4h = init_method(
|
||
torch.nn.Linear,
|
||
self.hidden_size,
|
||
self.inner_hidden_size,
|
||
bias=bias,
|
||
dtype=params_dtype,
|
||
)
|
||
# Project back to h.
|
||
self.dense_4h_to_h = init_method(
|
||
torch.nn.Linear,
|
||
self.inner_hidden_size,
|
||
self.hidden_size,
|
||
bias=bias,
|
||
dtype=params_dtype,
|
||
)
|
||
|
||
def forward(self, hidden_states):
|
||
"""
|
||
hidden_states: [seq_len, batch, hidden_size]
|
||
"""
|
||
|
||
# [seq_len, batch, inner_hidden_size]
|
||
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
||
|
||
intermediate_parallel = self.activation_func(intermediate_parallel)
|
||
|
||
output = self.dense_4h_to_h(intermediate_parallel)
|
||
|
||
return output
|
||
|
||
|
||
class GLMBlock(torch.nn.Module):
|
||
def __init__(
|
||
self,
|
||
hidden_size,
|
||
num_attention_heads,
|
||
layernorm_epsilon,
|
||
layer_id,
|
||
inner_hidden_size=None,
|
||
hidden_size_per_attention_head=None,
|
||
layernorm=LayerNorm,
|
||
use_bias=True,
|
||
params_dtype=torch.float,
|
||
num_layers=28,
|
||
position_encoding_2d=True,
|
||
empty_init=True
|
||
):
|
||
super(GLMBlock, self).__init__()
|
||
# Set output layer initialization if not provided.
|
||
|
||
self.layer_id = layer_id
|
||
|
||
# Layernorm on the input data.
|
||
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
||
|
||
self.position_encoding_2d = position_encoding_2d
|
||
|
||
# Self attention.
|
||
self.attention = SelfAttention(
|
||
hidden_size,
|
||
num_attention_heads,
|
||
layer_id,
|
||
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
||
bias=use_bias,
|
||
params_dtype=params_dtype,
|
||
position_encoding_2d=self.position_encoding_2d,
|
||
empty_init=empty_init
|
||
)
|
||
|
||
# Layernorm on the input data.
|
||
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
||
|
||
self.num_layers = num_layers
|
||
|
||
# GLU
|
||
self.mlp = GLU(
|
||
hidden_size,
|
||
inner_hidden_size=inner_hidden_size,
|
||
bias=use_bias,
|
||
layer_id=layer_id,
|
||
params_dtype=params_dtype,
|
||
empty_init=empty_init
|
||
)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
position_ids,
|
||
attention_mask: torch.Tensor,
|
||
layer_id,
|
||
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||
use_cache: bool = False,
|
||
output_attentions: bool = False,
|
||
):
|
||
"""
|
||
hidden_states: [seq_len, batch, hidden_size]
|
||
attention_mask: [(1, 1), seq_len, seq_len]
|
||
"""
|
||
|
||
# Layer norm at the begining of the transformer layer.
|
||
# [seq_len, batch, hidden_size]
|
||
attention_input = self.input_layernorm(hidden_states)
|
||
|
||
# Self attention.
|
||
attention_outputs = self.attention(
|
||
attention_input,
|
||
position_ids,
|
||
attention_mask=attention_mask,
|
||
layer_id=layer_id,
|
||
layer_past=layer_past,
|
||
use_cache=use_cache,
|
||
output_attentions=output_attentions
|
||
)
|
||
|
||
attention_output = attention_outputs[0]
|
||
|
||
outputs = attention_outputs[1:]
|
||
|
||
# Residual connection.
|
||
alpha = (2 * self.num_layers) ** 0.5
|
||
hidden_states = attention_input * alpha + attention_output
|
||
|
||
mlp_input = self.post_attention_layernorm(hidden_states)
|
||
|
||
# MLP.
|
||
mlp_output = self.mlp(mlp_input)
|
||
|
||
# Second residual connection.
|
||
output = mlp_input * alpha + mlp_output
|
||
|
||
if use_cache:
|
||
outputs = (output,) + outputs
|
||
else:
|
||
outputs = (output,) + outputs[1:]
|
||
|
||
return outputs # hidden_states, present, attentions
|
||
|
||
|
||
class ChatGLMPreTrainedModel(PreTrainedModel):
|
||
"""
|
||
An abstract class to handle weights initialization and
|
||
a simple interface for downloading and loading pretrained models.
|
||
"""
|
||
|
||
is_parallelizable = False
|
||
supports_gradient_checkpointing = True
|
||
config_class = ChatGLMConfig
|
||
base_model_prefix = "transformer"
|
||
_no_split_modules = ["GLMBlock"]
|
||
|
||
def __init__(self, *inputs, **kwargs):
|
||
super().__init__(*inputs, **kwargs)
|
||
|
||
def _init_weights(self, module: nn.Module):
|
||
"""Initialize the weights."""
|
||
return
|
||
|
||
def get_masks(self, input_ids, device):
|
||
batch_size, seq_length = input_ids.shape
|
||
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
||
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
|
||
attention_mask.tril_()
|
||
for i, context_length in enumerate(context_lengths):
|
||
attention_mask[i, :, :context_length] = 1
|
||
attention_mask.unsqueeze_(1)
|
||
attention_mask = (attention_mask < 0.5).bool()
|
||
|
||
return attention_mask
|
||
|
||
def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
|
||
batch_size, seq_length = input_ids.shape
|
||
if use_gmasks is None:
|
||
use_gmasks = [False] * batch_size
|
||
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
||
if self.position_encoding_2d:
|
||
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
||
for i, context_length in enumerate(context_lengths):
|
||
position_ids[i, context_length:] = mask_positions[i]
|
||
block_position_ids = [torch.cat((
|
||
torch.zeros(context_length, dtype=torch.long, device=device),
|
||
torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
|
||
)) for context_length in context_lengths]
|
||
block_position_ids = torch.stack(block_position_ids, dim=0)
|
||
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
||
else:
|
||
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
||
for i, context_length in enumerate(context_lengths):
|
||
if not use_gmasks[i]:
|
||
position_ids[i, context_length:] = mask_positions[i]
|
||
|
||
return position_ids
|
||
|
||
def _set_gradient_checkpointing(self, module, value=False):
|
||
if isinstance(module, ChatGLMModel):
|
||
module.gradient_checkpointing = value
|
||
|
||
|
||
CHATGLM_6B_START_DOCSTRING = r"""
|
||
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
||
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
||
usage and behavior.
|
||
|
||
Parameters:
|
||
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
||
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
||
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
||
"""
|
||
|
||
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
||
Args:
|
||
input_ids (`torch.LongTensor` of shape `({0})`):
|
||
Indices of input sequence tokens in the vocabulary.
|
||
|
||
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
||
See [`PreTrainedTokenizer.encode`] and
|
||
[`PreTrainedTokenizer.__call__`] for details.
|
||
|
||
[What are input IDs?](../glossary#input-ids)
|
||
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
||
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
||
|
||
- 1 for tokens that are **not masked**,
|
||
- 0 for tokens that are **masked**.
|
||
|
||
[What are attention masks?](../glossary#attention-mask)
|
||
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
||
|
||
- 0 corresponds to a *sentence A* token,
|
||
- 1 corresponds to a *sentence B* token.
|
||
|
||
[What are token type IDs?](../glossary#token-type-ids)
|
||
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
||
Indices of positions of each input sequence tokens in the position embeddings.
|
||
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
||
|
||
[What are position IDs?](../glossary#position-ids)
|
||
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
||
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
||
|
||
- 1 indicates the head is **not masked**,
|
||
- 0 indicates the head is **masked**.
|
||
|
||
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
||
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
||
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
||
than the model's internal embedding lookup matrix.
|
||
output_attentions (`bool`, *optional*):
|
||
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
||
tensors for more detail.
|
||
output_hidden_states (`bool`, *optional*):
|
||
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
||
more detail.
|
||
return_dict (`bool`, *optional*):
|
||
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
||
"""
|
||
|
||
|
||
@add_start_docstrings(
|
||
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
||
CHATGLM_6B_START_DOCSTRING,
|
||
)
|
||
class ChatGLMModel(ChatGLMPreTrainedModel):
|
||
"""
|
||
|
||
The model can behave as an encoder (with only self-attention) as well
|
||
as a decoder, in which case a layer of cross-attention is added between
|
||
the self-attention layers, following the architecture described in [Attention is
|
||
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
||
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
||
|
||
To behave as an decoder the model needs to be initialized with the
|
||
`is_decoder` argument of the configuration set to `True`.
|
||
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
||
argument and `add_cross_attention` set to `True`; an
|
||
`encoder_hidden_states` is then expected as an input to the forward pass.
|
||
"""
|
||
|
||
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
||
super().__init__(config)
|
||
if empty_init:
|
||
init_method = skip_init
|
||
else:
|
||
init_method = default_init
|
||
# recording parameters
|
||
self.max_sequence_length = config.max_sequence_length
|
||
self.hidden_size = config.hidden_size
|
||
self.params_dtype = torch.half
|
||
self.num_attention_heads = config.num_attention_heads
|
||
self.vocab_size = config.vocab_size
|
||
self.num_layers = config.num_layers
|
||
self.layernorm_epsilon = config.layernorm_epsilon
|
||
self.inner_hidden_size = config.inner_hidden_size
|
||
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
||
self.position_encoding_2d = config.position_encoding_2d
|
||
self.pre_seq_len = config.pre_seq_len
|
||
self.prefix_projection = config.prefix_projection
|
||
|
||
self.word_embeddings = init_method(
|
||
torch.nn.Embedding,
|
||
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
||
dtype=self.params_dtype
|
||
)
|
||
self.gradient_checkpointing = False
|
||
|
||
def get_layer(layer_id):
|
||
return GLMBlock(
|
||
self.hidden_size,
|
||
self.num_attention_heads,
|
||
self.layernorm_epsilon,
|
||
layer_id,
|
||
inner_hidden_size=self.inner_hidden_size,
|
||
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
||
layernorm=LayerNorm,
|
||
use_bias=True,
|
||
params_dtype=self.params_dtype,
|
||
position_encoding_2d=self.position_encoding_2d,
|
||
empty_init=empty_init
|
||
)
|
||
|
||
self.layers = torch.nn.ModuleList(
|
||
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
||
)
|
||
|
||
# Final layer norm before output.
|
||
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
||
|
||
if self.pre_seq_len is not None:
|
||
for param in self.parameters():
|
||
param.requires_grad = False
|
||
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
||
self.prefix_encoder = PrefixEncoder(config)
|
||
self.dropout = torch.nn.Dropout(0.1)
|
||
|
||
# total_params = sum(p.numel() for p in self.parameters())
|
||
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
||
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
||
|
||
def get_input_embeddings(self):
|
||
return self.word_embeddings
|
||
|
||
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
||
self.word_embeddings = new_embeddings
|
||
|
||
def get_prompt(self, batch_size, device, dtype=torch.half):
|
||
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
||
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
||
past_key_values = past_key_values.view(
|
||
batch_size,
|
||
self.pre_seq_len,
|
||
self.num_layers * 2,
|
||
self.num_attention_heads,
|
||
self.hidden_size // self.num_attention_heads
|
||
)
|
||
# seq_len, b, nh, hidden_size
|
||
past_key_values = self.dropout(past_key_values)
|
||
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
||
# past_key_values = [(v[0], v[1]) for v in past_key_values]
|
||
return past_key_values
|
||
|
||
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
||
@add_code_sample_docstrings(
|
||
checkpoint=_CHECKPOINT_FOR_DOC,
|
||
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
||
config_class=_CONFIG_FOR_DOC,
|
||
)
|
||
def forward(
|
||
self,
|
||
input_ids: Optional[torch.LongTensor] = None,
|
||
position_ids: Optional[torch.LongTensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
||
inputs_embeds: Optional[torch.LongTensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
||
|
||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||
output_hidden_states = (
|
||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||
)
|
||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
||
if self.gradient_checkpointing and self.training:
|
||
if use_cache:
|
||
logger.warning_once(
|
||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||
)
|
||
use_cache = False
|
||
|
||
if input_ids is not None and inputs_embeds is not None:
|
||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||
elif input_ids is not None:
|
||
batch_size, seq_length = input_ids.shape[:2]
|
||
elif inputs_embeds is not None:
|
||
batch_size, seq_length = inputs_embeds.shape[:2]
|
||
else:
|
||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||
|
||
if inputs_embeds is None:
|
||
inputs_embeds = self.word_embeddings(input_ids)
|
||
|
||
if past_key_values is None:
|
||
if self.pre_seq_len is not None:
|
||
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
|
||
dtype=inputs_embeds.dtype)
|
||
else:
|
||
past_key_values = tuple([None] * len(self.layers))
|
||
|
||
if attention_mask is None:
|
||
attention_mask = self.get_masks(
|
||
input_ids,
|
||
device=input_ids.device
|
||
)
|
||
|
||
|
||
if position_ids is None:
|
||
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
||
seqs = input_ids.tolist()
|
||
|
||
mask_positions, use_gmasks = [], []
|
||
for seq in seqs:
|
||
mask_token = gMASK if gMASK in seq else MASK
|
||
use_gmask = mask_token == gMASK
|
||
mask_positions.append(seq.index(mask_token))
|
||
use_gmasks.append(use_gmask)
|
||
|
||
position_ids = self.get_position_ids(
|
||
input_ids,
|
||
mask_positions=mask_positions,
|
||
device=input_ids.device,
|
||
use_gmasks=use_gmasks
|
||
)
|
||
|
||
if self.pre_seq_len is not None and attention_mask is not None:
|
||
prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
|
||
attention_mask.device)
|
||
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
||
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
||
|
||
# [seq_len, batch, hidden_size]
|
||
hidden_states = inputs_embeds.transpose(0, 1)
|
||
|
||
presents = () if use_cache else None
|
||
all_self_attentions = () if output_attentions else None
|
||
all_hidden_states = () if output_hidden_states else None
|
||
|
||
if attention_mask is None:
|
||
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
||
else:
|
||
attention_mask = attention_mask.to(hidden_states.device)
|
||
|
||
for i, layer in enumerate(self.layers):
|
||
|
||
if output_hidden_states:
|
||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
layer_past = past_key_values[i]
|
||
|
||
if self.gradient_checkpointing and self.training:
|
||
layer_ret = torch.utils.checkpoint.checkpoint(
|
||
layer,
|
||
hidden_states,
|
||
position_ids,
|
||
attention_mask,
|
||
torch.tensor(i),
|
||
layer_past,
|
||
use_cache,
|
||
output_attentions
|
||
)
|
||
else:
|
||
layer_ret = layer(
|
||
hidden_states,
|
||
position_ids=position_ids,
|
||
attention_mask=attention_mask,
|
||
layer_id=torch.tensor(i),
|
||
layer_past=layer_past,
|
||
use_cache=use_cache,
|
||
output_attentions=output_attentions
|
||
)
|
||
|
||
hidden_states = layer_ret[0]
|
||
|
||
if use_cache:
|
||
presents = presents + (layer_ret[1],)
|
||
|
||
if output_attentions:
|
||
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
||
|
||
# Final layer norm.
|
||
hidden_states = self.final_layernorm(hidden_states)
|
||
|
||
if output_hidden_states:
|
||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||
|
||
if not return_dict:
|
||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
||
|
||
return BaseModelOutputWithPast(
|
||
last_hidden_state=hidden_states,
|
||
past_key_values=presents,
|
||
hidden_states=all_hidden_states,
|
||
attentions=all_self_attentions,
|
||
)
|
||
|
||
|
||
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
||
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
||
super().__init__(config)
|
||
if empty_init:
|
||
init_method = skip_init
|
||
else:
|
||
init_method = default_init
|
||
|
||
# self.hidden_size = config.hidden_size
|
||
# self.params_dtype = torch.half
|
||
# self.vocab_size = config.vocab_size
|
||
self.max_sequence_length = config.max_sequence_length
|
||
|
||
self.position_encoding_2d = config.position_encoding_2d
|
||
|
||
self.transformer = ChatGLMModel(config, empty_init=empty_init)
|
||
|
||
self.lm_head = init_method(
|
||
nn.Linear,
|
||
config.hidden_size,
|
||
config.vocab_size,
|
||
bias=False,
|
||
dtype=torch.half
|
||
)
|
||
|
||
self.config = config
|
||
|
||
self.quantized = False
|
||
|
||
if self.config.quantization_bit:
|
||
self.quantize(self.config.quantization_bit, empty_init=True)
|
||
|
||
def get_output_embeddings(self):
|
||
return self.lm_head
|
||
|
||
def set_output_embeddings(self, new_embeddings):
|
||
self.lm_head = new_embeddings
|
||
|
||
def _update_model_kwargs_for_generation(
|
||
self,
|
||
outputs: ModelOutput,
|
||
model_kwargs: Dict[str, Any],
|
||
is_encoder_decoder: bool = False,
|
||
standardize_cache_format: bool = False,
|
||
) -> Dict[str, Any]:
|
||
# update past_key_values
|
||
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
||
outputs, standardize_cache_format=standardize_cache_format
|
||
)
|
||
|
||
# update attention mask
|
||
if "attention_mask" in model_kwargs:
|
||
attention_mask = model_kwargs["attention_mask"]
|
||
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
||
attention_mask = torch.cat(
|
||
[attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3)
|
||
new_attention_mask = attention_mask[:, :, -1:].clone()
|
||
new_attention_mask[..., -1] = False
|
||
model_kwargs["attention_mask"] = torch.cat(
|
||
[attention_mask, new_attention_mask], dim=2
|
||
)
|
||
|
||
# update position ids
|
||
if "position_ids" in model_kwargs:
|
||
position_ids = model_kwargs["position_ids"]
|
||
new_position_id = position_ids[..., -1:].clone()
|
||
new_position_id[:, 1, :] += 1
|
||
model_kwargs["position_ids"] = torch.cat(
|
||
[position_ids, new_position_id], dim=-1
|
||
)
|
||
|
||
return model_kwargs
|
||
|
||
def prepare_inputs_for_generation(
|
||
self,
|
||
input_ids: torch.LongTensor,
|
||
past: Optional[torch.Tensor] = None,
|
||
past_key_values: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.Tensor] = None,
|
||
**kwargs
|
||
) -> dict:
|
||
batch_size, seq_length = input_ids.shape
|
||
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
||
seqs = input_ids.tolist()
|
||
mask_positions, use_gmasks = [], []
|
||
for seq in seqs:
|
||
mask_token = gMASK if gMASK in seq else MASK
|
||
use_gmask = mask_token == gMASK
|
||
mask_positions.append(seq.index(mask_token))
|
||
use_gmasks.append(use_gmask)
|
||
|
||
# only last token for input_ids if past is not None
|
||
if past is not None or past_key_values is not None:
|
||
last_token = input_ids[:, -1].unsqueeze(-1)
|
||
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
||
attention_mask = attention_mask[:, :, -1:]
|
||
else:
|
||
attention_mask = None
|
||
if position_ids is not None:
|
||
position_ids = position_ids[..., -1:]
|
||
else:
|
||
context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs]
|
||
if self.position_encoding_2d:
|
||
position_ids = torch.tensor(
|
||
[[mask_position, seq_length - context_length] for mask_position, context_length in
|
||
zip(mask_positions, context_lengths)], dtype=torch.long, device=input_ids.device).unsqueeze(-1)
|
||
else:
|
||
position_ids = torch.tensor([mask_position for mask_position in mask_positions], dtype=torch.long,
|
||
device=input_ids.device).unsqueeze(-1)
|
||
|
||
if past is None:
|
||
past = past_key_values
|
||
return {
|
||
"input_ids": last_token,
|
||
"past_key_values": past,
|
||
"position_ids": position_ids,
|
||
"attention_mask": attention_mask
|
||
}
|
||
else:
|
||
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
||
logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool")
|
||
attention_mask = None
|
||
if attention_mask is None:
|
||
attention_mask = self.get_masks(
|
||
input_ids,
|
||
device=input_ids.device
|
||
)
|
||
if position_ids is None:
|
||
position_ids = self.get_position_ids(
|
||
input_ids,
|
||
device=input_ids.device,
|
||
mask_positions=mask_positions,
|
||
use_gmasks=use_gmasks
|
||
)
|
||
|
||
return {
|
||
"input_ids": input_ids,
|
||
"past_key_values": past,
|
||
"position_ids": position_ids,
|
||
"attention_mask": attention_mask
|
||
}
|
||
|
||
def forward(
|
||
self,
|
||
input_ids: Optional[torch.Tensor] = None,
|
||
position_ids: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
||
inputs_embeds: Optional[torch.Tensor] = None,
|
||
labels: Optional[torch.Tensor] = None,
|
||
use_cache: Optional[bool] = None,
|
||
output_attentions: Optional[bool] = None,
|
||
output_hidden_states: Optional[bool] = None,
|
||
return_dict: Optional[bool] = None,
|
||
):
|
||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||
|
||
transformer_outputs = self.transformer(
|
||
input_ids=input_ids,
|
||
position_ids=position_ids,
|
||
attention_mask=attention_mask,
|
||
past_key_values=past_key_values,
|
||
inputs_embeds=inputs_embeds,
|
||
use_cache=use_cache,
|
||
output_attentions=output_attentions,
|
||
output_hidden_states=output_hidden_states,
|
||
return_dict=return_dict,
|
||
)
|
||
|
||
hidden_states = transformer_outputs[0]
|
||
|
||
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
||
|
||
loss = None
|
||
if labels is not None:
|
||
lm_logits = lm_logits.to(torch.float32)
|
||
|
||
# Shift so that tokens < n predict n
|
||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||
shift_labels = labels[..., 1:].contiguous()
|
||
# Flatten the tokens
|
||
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
||
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
||
|
||
lm_logits = lm_logits.to(hidden_states.dtype)
|
||
loss = loss.to(hidden_states.dtype)
|
||
|
||
if not return_dict:
|
||
output = (lm_logits,) + transformer_outputs[1:]
|
||
return ((loss,) + output) if loss is not None else output
|
||
|
||
return CausalLMOutputWithPast(
|
||
loss=loss,
|
||
logits=lm_logits,
|
||
past_key_values=transformer_outputs.past_key_values,
|
||
hidden_states=transformer_outputs.hidden_states,
|
||
attentions=transformer_outputs.attentions,
|
||
)
|
||
|
||
@staticmethod
|
||
def _reorder_cache(
|
||
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
||
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
||
"""
|
||
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
||
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
||
beam_idx at every generation step.
|
||
|
||
Output shares the same memory storage as `past`.
|
||
"""
|
||
return tuple(
|
||
(
|
||
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
||
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
||
)
|
||
for layer_past in past
|
||
)
|
||
|
||
def process_response(self, response):
|
||
response = response.strip()
|
||
response = response.replace("[[训练时间]]", "2023年")
|
||
punkts = [
|
||
[",", ","],
|
||
["!", "!"],
|
||
[":", ":"],
|
||
[";", ";"],
|
||
["\?", "?"],
|
||
]
|
||
for item in punkts:
|
||
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
|
||
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
|
||
return response
|
||
|
||
@torch.no_grad()
|
||
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
||
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
||
if history is None:
|
||
history = []
|
||
if logits_processor is None:
|
||
logits_processor = LogitsProcessorList()
|
||
logits_processor.append(InvalidScoreLogitsProcessor())
|
||
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
||
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
||
if not history:
|
||
prompt = query
|
||
else:
|
||
prompt = ""
|
||
for i, (old_query, response) in enumerate(history):
|
||
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
||
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
||
inputs = tokenizer([prompt], return_tensors="pt")
|
||
inputs = inputs.to(self.device)
|
||
outputs = self.generate(**inputs, **gen_kwargs)
|
||
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
||
response = tokenizer.decode(outputs)
|
||
response = self.process_response(response)
|
||
history = history + [(query, response)]
|
||
return response, history
|
||
|
||
@torch.no_grad()
|
||
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
|
||
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
||
if history is None:
|
||
history = []
|
||
if logits_processor is None:
|
||
logits_processor = LogitsProcessorList()
|
||
logits_processor.append(InvalidScoreLogitsProcessor())
|
||
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
||
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
||
if not history:
|
||
prompt = query
|
||
else:
|
||
prompt = ""
|
||
for i, (old_query, response) in enumerate(history):
|
||
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
||
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
||
inputs = tokenizer([prompt], return_tensors="pt")
|
||
inputs = inputs.to(self.device)
|
||
for outputs in self.stream_generate(**inputs, **gen_kwargs):
|
||
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
||
response = tokenizer.decode(outputs)
|
||
response = self.process_response(response)
|
||
new_history = history + [(query, response)]
|
||
yield response, new_history
|
||
|
||
@torch.no_grad()
|
||
def stream_generate(
|
||
self,
|
||
input_ids,
|
||
generation_config: Optional[GenerationConfig] = None,
|
||
logits_processor: Optional[LogitsProcessorList] = None,
|
||
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
||
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
||
**kwargs,
|
||
):
|
||
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
||
|
||
if generation_config is None:
|
||
generation_config = self.generation_config
|
||
generation_config = copy.deepcopy(generation_config)
|
||
model_kwargs = generation_config.update(**kwargs)
|
||
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
||
|
||
if isinstance(eos_token_id, int):
|
||
eos_token_id = [eos_token_id]
|
||
|
||
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
||
if has_default_max_length and generation_config.max_new_tokens is None:
|
||
warnings.warn(
|
||
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
||
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
||
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
||
UserWarning,
|
||
)
|
||
elif generation_config.max_new_tokens is not None:
|
||
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
||
if not has_default_max_length:
|
||
logger.warn(
|
||
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
||
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
||
"Please refer to the documentation for more information. "
|
||
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
||
UserWarning,
|
||
)
|
||
|
||
if input_ids_seq_length >= generation_config.max_length:
|
||
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
||
logger.warning(
|
||
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
||
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
||
" increasing `max_new_tokens`."
|
||
)
|
||
|
||
# 2. Set generation parameters if not already defined
|
||
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
||
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
||
|
||
logits_processor = self._get_logits_processor(
|
||
generation_config=generation_config,
|
||
input_ids_seq_length=input_ids_seq_length,
|
||
encoder_input_ids=input_ids,
|
||
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
||
logits_processor=logits_processor,
|
||
)
|
||
|
||
stopping_criteria = self._get_stopping_criteria(
|
||
generation_config=generation_config, stopping_criteria=stopping_criteria
|
||
)
|
||
logits_warper = self._get_logits_warper(generation_config)
|
||
|
||
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
||
scores = None
|
||
while True:
|
||
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
||
# forward pass to get next token
|
||
outputs = self(
|
||
**model_inputs,
|
||
return_dict=True,
|
||
output_attentions=False,
|
||
output_hidden_states=False,
|
||
)
|
||
|
||
next_token_logits = outputs.logits[:, -1, :]
|
||
|
||
# pre-process distribution
|
||
next_token_scores = logits_processor(input_ids, next_token_logits)
|
||
next_token_scores = logits_warper(input_ids, next_token_scores)
|
||
|
||
# sample
|
||
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
||
if generation_config.do_sample:
|
||
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
||
else:
|
||
next_tokens = torch.argmax(probs, dim=-1)
|
||
|
||
# update generated ids, model inputs, and length for next step
|
||
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
||
model_kwargs = self._update_model_kwargs_for_generation(
|
||
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
||
)
|
||
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
||
|
||
# stop when each sentence is finished, or if we exceed the maximum length
|
||
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
||
break
|
||
yield input_ids
|
||
|
||
def quantize(self, bits: int, empty_init=False, **kwargs):
|
||
if bits == 0:
|
||
return
|
||
|
||
from .quantization import quantize
|
||
|
||
if self.quantized:
|
||
logger.info("Already quantized.")
|
||
return self
|
||
|
||
self.quantized = True
|
||
|
||
self.config.quantization_bit = bits
|
||
|
||
self.transformer = quantize(self.transformer, bits, empty_init=empty_init, **kwargs)
|
||
return self
|