You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/kernel/triton/flash_decoding.py

323 lines
11 KiB

# Applying Flash-Decoding as descibed in
# https://pytorch.org/blog/flash-decoding/
# by Tri Dao, 2023
import torch
import triton
import triton.language as tl
# Triton 2.1.0
@triton.jit
def _flash_decoding_fwd_kernel(
Q, # [batch_size, head_num, q_len(1), head_dim]
KCache, # [num_blocks, num_kv_heads, head_dim, block_size]
VCache, # [num_blocks, num_kv_heads, head_dim, block_size]
block_tables, # [batch_size, max_blocks_per_sequence]
mid_o, # [batch_size, head_num, kv_split_num, head_dim]
mid_o_lse, # [batch_size, head_num, kv_split_num]
kv_seq_len, # [batch_size]
batch_size,
stride_qt,
stride_qh,
stride_qd,
stride_cacheb,
stride_cacheh,
stride_cached,
stride_cachebs,
stride_bts,
stride_btb,
stride_mid_ot,
stride_mid_oh,
stride_mid_ob,
stride_mid_od,
stride_mid_o_lset,
stride_mid_o_lseh,
stride_mid_o_lseb,
sm_scale,
KV_GROUPS: tl.constexpr,
BLOCK_KV: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
HEAD_DIM: tl.constexpr,
):
cur_seq_idx = tl.program_id(0)
if cur_seq_idx >= batch_size:
return
cur_head_idx = tl.program_id(1)
block_start_kv = tl.program_id(2) # for splitting k/v
cur_kv_head_idx = cur_head_idx // KV_GROUPS
offsets_dmodel = tl.arange(0, HEAD_DIM)
# NOTE It requires BLOCK_KV and BLOCK_SIZE to be the same
# TODO might want to replace with BLOCK_KV % BLOCK_SIZE == 0 (optimize BLOCK_KV as multiple of BLOCK_SIZE)
# and then support calculating multiple kv cache blocks on an instance
tl.static_assert(BLOCK_KV == BLOCK_SIZE)
# get the current (kv) sequence length from provided context lengths tensor
cur_kv_seq_len = tl.load(kv_seq_len + cur_seq_idx)
offsets_q = cur_seq_idx * stride_qt + cur_head_idx * stride_qh + offsets_dmodel * stride_qd
q = tl.load(Q + offsets_q)
# block table for the current sequence
block_table_ptr = block_tables + cur_seq_idx * stride_bts
# actually current block table current block start idx
# cur_bt_start_idx = block_start_kv * (BLOCK_KV // BLOCK_SIZE)
cur_bt_start_idx = block_start_kv
cur_block_id = tl.load(block_table_ptr + cur_bt_start_idx * stride_btb)
if block_start_kv * BLOCK_KV >= cur_kv_seq_len:
return
cur_occupied_size = tl.where(
(block_start_kv + 1) * BLOCK_SIZE <= cur_kv_seq_len, BLOCK_SIZE, cur_kv_seq_len - block_start_kv * BLOCK_SIZE
)
tl.device_assert(cur_occupied_size >= 0)
offset_kvcache = cur_block_id * stride_cacheb + cur_kv_head_idx * stride_cacheh
K_block_ptr = tl.make_block_ptr(
base=KCache + offset_kvcache,
shape=(HEAD_DIM, cur_occupied_size),
strides=(stride_cached, stride_cachebs),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_SIZE),
order=(0, 1),
)
V_block_ptr = tl.make_block_ptr(
base=VCache + offset_kvcache,
shape=(HEAD_DIM, cur_occupied_size),
strides=(stride_cached, stride_cachebs),
offsets=(0, 0),
block_shape=(HEAD_DIM, BLOCK_SIZE),
order=(0, 1),
)
k_cur_block = tl.load(K_block_ptr)
v_cur_block = tl.load(V_block_ptr)
acc = tl.zeros([HEAD_DIM], dtype=tl.float32)
# use block size of the paged/blocked kv cache
S_ij = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
# NOTE a trick to come across triton's requirement that values in both first and second input shapes must be >= 16,
# Multiplying two tensors with shapes [1, d] * [d, block_size] will fail.
# Refer to https://github.com/openai/triton/discussions/895
S_ij += tl.sum(q[:, None] * k_cur_block, 0)
S_ij *= sm_scale
S_ij += tl.where(block_start_kv * BLOCK_KV + tl.arange(0, BLOCK_SIZE) < cur_kv_seq_len, 0, float("-inf"))
m = tl.max(S_ij, 0)
S_ij -= m
p_ij_hat = tl.exp(S_ij)
l = tl.sum(p_ij_hat, 0)
p_ij_hat = p_ij_hat.to(v_cur_block.type.element_ty)
acc += tl.sum(v_cur_block * p_ij_hat[None, :], 1)
acc = acc / l
offsets_mid_o = (
cur_seq_idx * stride_mid_ot
+ cur_head_idx * stride_mid_oh
+ block_start_kv * stride_mid_ob
+ offsets_dmodel * stride_mid_od
)
tl.store(mid_o + offsets_mid_o, acc)
offsets_mid_o_lse = (
cur_seq_idx * stride_mid_o_lset + cur_head_idx * stride_mid_o_lseh + block_start_kv * stride_mid_o_lseb
)
# logsumexp L^(j) = m^(j) + log(l^(j))
tl.store(mid_o_lse + offsets_mid_o_lse, m + tl.log(l))
# Triton 2.1.0
@triton.jit
def _flash_decoding_fwd_reduce_kernel(
mid_o, # [batch_size, head_num, kv_split_num, head_dim]
mid_o_lse, # [batch_size, head_num, kv_split_num]
O, # [batch_size, num_heads, head_dim] or [batch_size, 1, num_heads, head_dim]
kv_seq_len,
batch_size,
stride_mid_ot,
stride_mid_oh,
stride_mid_ob,
stride_mid_od,
stride_o_lset,
stride_o_lseh,
stride_o_lseb,
stride_ob,
stride_ol,
stride_oh,
stride_od,
BLOCK_KV: tl.constexpr,
HEAD_DIM: tl.constexpr,
):
cur_seq_idx = tl.program_id(0)
if cur_seq_idx >= batch_size:
return
cur_head_idx = tl.program_id(1)
cur_kv_seq_len = tl.load(kv_seq_len + cur_seq_idx)
offsets_dmodel = tl.arange(0, HEAD_DIM)
# NOTE currently the block size BLOCK_KV splitting kv is relatively small as we have
# BLOCK_KV == BLOCK_SIZE for now. We might want to decrease the number of blocks of kv splitted.
kv_split_num = (cur_kv_seq_len + BLOCK_KV - 1) // BLOCK_KV
m_i = float("-inf") # max logic
l = 0.0 # sum exp
acc = tl.zeros([HEAD_DIM], dtype=tl.float32)
offsets_mid_o = cur_seq_idx * stride_mid_ot + cur_head_idx * stride_mid_oh + offsets_dmodel
offset_mid_lse = cur_seq_idx * stride_o_lset + cur_head_idx * stride_o_lseh
for block_i in range(0, kv_split_num, 1):
mid_o_block = tl.load(mid_o + offsets_mid_o + block_i * stride_mid_ob)
lse = tl.load(mid_o_lse + offset_mid_lse + block_i * stride_o_lseb)
m_ij = tl.maximum(m_i, lse)
scale = tl.exp(m_i - m_ij)
acc = acc * scale
lse -= m_ij
exp_logic = tl.exp(lse)
acc += exp_logic * mid_o_block
l = scale * l + exp_logic
m_i = m_ij
acc = acc / l
offsets_O = cur_seq_idx * stride_ob + cur_head_idx * stride_oh + offsets_dmodel
tl.store(O + offsets_O, acc.to(O.type.element_ty))
return
# Decoding Stage
# Used with blocked KV Cache (PagedAttention)
def flash_decoding_attention(
q: torch.Tensor,
k_cache: torch.Tensor,
v_cache: torch.Tensor,
kv_seq_len: torch.Tensor,
block_tables: torch.Tensor,
block_size: int,
max_seq_len_in_batch: int = None,
output: torch.Tensor = None,
mid_output: torch.Tensor = None,
mid_output_lse: torch.Tensor = None,
sm_scale: int = None,
kv_group_num: int = 1,
):
"""
Flash decoding implemented with a blocked KV Cache (PagedAttention) during decoding stage.
Args:
q (torch.Tensor): [bsz, num_heads, head_dim]
k_cache (torch.Tensor): [num_blocks, num_kv_heads, head_dim, block_size]
v_cache (torch.Tensor): [num_blocks, num_kv_heads, head_dim, block_size]
kv_seq_len (torch.Tensor): [batch_size]
records the (kv) sequence lengths incorporating past kv sequence lengths.
block_tables (torch.Tensor): [batch_size, max_blocks_per_sequence]
max_seq_len_in_batch (int): Maximum sequence length in the batch.
output (torch.Tensor): [bsz, 1, num_heads, head_dim]
mid_output (torch.Tensor): [ max_bsz , num_heads, kv_max_split_num, head_dim]
Intermediate output tensor. `max_bsz` should be greater than or equal to `bsz`.
mid_output_lse (torch.Tensor): [ max_bsz , num_heads, kv_max_split_num]
Log-sum-exp of intermediate output. `max_bsz` should be greater than or equal to `bsz`.
block_size (int): Size of each block in the blocked key/value cache.
num_kv_group (int, optional): Number of key/value groups. Defaults to 1.
Returns:
Output tensor with shape [bsz, num_heads, q_len, head_dim]
"""
q = q.squeeze() if q.dim() == 4 else q
assert q.dim() == 3, f"Incompatible q dim: {q.dim()}"
bsz, num_heads, head_dim = q.shape
assert head_dim in {32, 64, 128, 256}
assert kv_seq_len.shape[0] == block_tables.shape[0] == bsz, (
f"Got incompatible batch size (number of seqs):\n"
f" KV seq lengths bsz {kv_seq_len.shape[0]}, Block tables bsz {block_tables.shape[0]}, "
f"batch size {bsz}"
)
assert k_cache.size(-1) == v_cache.size(-1) == block_size, (
f"Got incompatible block size on kv caches:\n"
f" assigned block_size {block_size}, k_cache block_size {k_cache.size(-1)}, "
f"v_cache block_size {v_cache.size(-1)}"
)
# NOTE BLOCK_KV could be considered as block splitting the sequence on k/v
# For now, BLOCK_KV is supposed to be equivalent with the size of physical cache block (i.e.`block_size`)
assert block_size in {16, 32, 64, 128}
BLOCK_KV = block_size
sm_scale = 1.0 / (head_dim**0.5) if sm_scale is None else sm_scale
max_seq_len_in_batch = kv_seq_len.max().item() if max_seq_len_in_batch is None else max_seq_len_in_batch
# For compatibility (TODO revise modeling in future)
kv_max_split_num = (max_seq_len_in_batch + BLOCK_KV - 1) // BLOCK_KV
mid_output = (
torch.zeros(size=(bsz, num_heads, kv_max_split_num, head_dim), dtype=torch.float32, device=q.device)
if mid_output is None
else mid_output
)
mid_output_lse = (
torch.zeros(size=(bsz, num_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
if mid_output_lse is None
else mid_output_lse
)
# NOTE use `triton.next_power_of_2` here to utilize the cache mechanism of triton
# To optimize, revise batching/scheduling to batch 2^n sequences in a batch (preferred)
grid = (triton.next_power_of_2(bsz), num_heads, triton.cdiv(triton.next_power_of_2(max_seq_len_in_batch), BLOCK_KV))
_flash_decoding_fwd_kernel[grid](
q,
k_cache,
v_cache,
block_tables,
mid_output,
mid_output_lse,
kv_seq_len,
bsz,
q.stride(0),
q.stride(1),
q.stride(2),
k_cache.stride(0),
k_cache.stride(1),
k_cache.stride(2),
k_cache.stride(3),
block_tables.stride(0),
block_tables.stride(1),
mid_output.stride(0),
mid_output.stride(1),
mid_output.stride(2),
mid_output.stride(3),
mid_output_lse.stride(0),
mid_output_lse.stride(1),
mid_output_lse.stride(2),
sm_scale,
KV_GROUPS=kv_group_num,
BLOCK_KV=block_size,
BLOCK_SIZE=block_size,
HEAD_DIM=head_dim,
)
output = torch.empty((bsz, 1, num_heads, head_dim), dtype=q.dtype, device=q.device) if output is None else output
grid = (triton.next_power_of_2(bsz), num_heads)
_flash_decoding_fwd_reduce_kernel[grid](
mid_output,
mid_output_lse,
output,
kv_seq_len,
bsz,
mid_output.stride(0),
mid_output.stride(1),
mid_output.stride(2),
mid_output.stride(3),
mid_output_lse.stride(0),
mid_output_lse.stride(1),
mid_output_lse.stride(2),
output.stride(0),
output.stride(1),
output.stride(2),
output.stride(3),
BLOCK_KV=block_size,
HEAD_DIM=head_dim,
)
return output