ColossalAI/colossalai/pipeline/pipeline_process_group.py

169 lines
5.7 KiB
Python

from typing import List, Dict, Tuple
import os
import threading
from torch.distributed import rpc
import torch.distributed as dist
from colossalai.tensor import ProcessGroup
class PipelineProcessGroup:
# TODO : flexible API for DP size and TP size
# In the future design mode, dp_degree and tp_degree should be removed
def __init__(self) -> None:
self.is_initialize = False
def set_global_info(self,
rank: int,
world_size: int,
dp_degree: int = 1,
tp_degree: int = 1,
num_worker_threads: int = 1,
device: str = "cuda") -> None:
device_mesh_size = dp_degree * tp_degree
assert world_size % device_mesh_size == 0, "world_size must be the multiple of dp_degree * tp_degree !!!"
self._num_worker_threads = num_worker_threads
self._device_mesh_size = device_mesh_size
self._rank = rank
self._world_size = world_size
self._dp_degree = dp_degree
self._tp_degree = tp_degree
self.device = device
self._stage_num = world_size // device_mesh_size
self._pp_rank = rank // device_mesh_size
self._pp_ranks = [(rank % device_mesh_size) + i * device_mesh_size for i in range(self._stage_num)]
self._local_stage_ranks = [(rank // device_mesh_size * device_mesh_size) + i for i in range(device_mesh_size)]
# pp_ranks
self._initialize_pp_process_group()
# initialise tp dp process groups
self._initialize_tp_dp_process_group()
# status
self._is_first_pp_rank = self._pp_rank == 0
self._is_last_pp_rank = self._pp_rank == self._stage_num - 1
self.is_initialize = True
# lock
self.initialise_lock = threading.Lock()
self.chimera_lock = threading.Lock()
def _initialize_process_group(self):
stage_num = self.get_stage_num()
if stage_num == 1:
return
device = self.device
world_size = self.get_world_size()
rank = self.get_global_rank()
backend = 'nccl' if device == 'cuda' else 'gloo'
dist.init_process_group(backend, world_size=world_size, rank=rank, group_name='main_group')
def _initialize_pp_process_group(self) -> None:
rank = self.get_global_rank()
world_size = self.get_world_size()
# build rpc connection
options = rpc.TensorPipeRpcBackendOptions(num_worker_threads=self._num_worker_threads)
for pp_rank in self._pp_ranks:
options.set_device_map(f'work{pp_rank}', {rank: pp_rank})
rpc.init_rpc(name=f'work{rank}', rank=rank, world_size=world_size, rpc_backend_options=options)
def _initialize_tp_dp_process_group(self) -> None:
rank = self.get_global_rank()
local_stage_ranks = self.get_local_stage_global_ranks()
dp_degree = self.get_dp_degree()
tp_degree = self.get_tp_degree()
self._tp_dp_process_group = ProcessGroup(rank, local_stage_ranks, tp_degree, dp_degree)
def get_global_rank(self):
return self._rank
def get_world_size(self):
return self._world_size
def get_dp_degree(self) -> int:
return self._dp_degree
def get_tp_degree(self) -> int:
return self._tp_degree
def get_local_device_mesh_size(self) -> int:
return self._device_mesh_size
def get_device_mesh_num(self) -> int:
pass
def get_stage_num(self) -> int:
return self._stage_num
def is_first_stage(self) -> bool:
return self._is_first_pp_rank
def is_last_stage(self) -> bool:
return self._is_last_pp_rank
def check_pp_rank_valid(self, pp_rank: int) -> bool:
return -1 < pp_rank < self._stage_num
def get_local_pp_rank(self) -> int:
return self._pp_rank
def get_prev_pp_rank(self) -> int:
prev_pp_rank = self._pp_rank - 1
if not self.check_pp_rank_valid(prev_pp_rank):
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a previous stage!")
return prev_pp_rank
def get_next_pp_rank(self) -> int:
next_pp_rank = self._pp_rank + 1
if not self.check_pp_rank_valid(next_pp_rank):
assert ValueError(f"current rank's pp_rank: {self._pp_rank} doesn't have a next stage!")
return next_pp_rank
def get_local_stage_global_ranks(self) -> List[int]:
return self._local_stage_ranks
def local_dp_rank(self) -> int:
return self._tp_dp_process_group.dp_local_rank()
def local_tp_rank(self) -> int:
return self._tp_dp_process_group.tp_local_rank()
def get_pp_global_ranks(self) -> int:
return self._pp_ranks
def get_dp_global_ranks(self):
pass
def get_tp_global_ranks(self):
pass
def get_chimera_all_reduce_group(self, pp_rank: int):
with self.chimera_lock:
if not hasattr(self, 'chimera_groups'):
world_size = self.get_world_size()
stage_num = self.get_stage_num()
assert world_size % 2 == 0, 'world_size must be even in chimera!'
self.chimera_groups = {}
for rank in range(world_size // 2):
pair = [rank, world_size - 1 - rank]
group = dist.new_group(pair)
self.chimera_groups[pair[0]] = group
self.chimera_groups[pair[1]] = group
self.chimera_groups[pair[0] + stage_num] = group
self.chimera_groups[pair[1] + stage_num] = group
self.chimera_step_lock = threading.Lock()
self.chimera_step_lock.acquire()
return self.chimera_groups[pp_rank]
ppg = PipelineProcessGroup()