mirror of https://github.com/hpcaitech/ColossalAI
45 lines
1.2 KiB
Python
45 lines
1.2 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
from torch.optim import Optimizer
|
|
from colossalai.utils import clip_grad_norm_fp32
|
|
|
|
|
|
class ColossalaiOptimizer(Optimizer):
|
|
|
|
def __init__(self, optim: Optimizer):
|
|
self.optim = optim
|
|
|
|
@property
|
|
def param_groups(self):
|
|
return self.optim.param_groups
|
|
|
|
@property
|
|
def defaults(self):
|
|
return self.optim.defaults
|
|
|
|
def add_param_group(self, *args, **kwargs):
|
|
return self.optim.add_param_group(*args, **kwargs)
|
|
|
|
def step(self, *args, **kwargs):
|
|
return self.optim.step(*args, **kwargs)
|
|
|
|
def zero_grad(self, *args, **kwargs):
|
|
self.optim.zero_grad(*args, **kwargs)
|
|
|
|
def load_state_dict(self, *args, **kwargs):
|
|
self.optim.load_state_dict(*args, **kwargs)
|
|
|
|
def state_dict(self):
|
|
return self.optim.state_dict()
|
|
|
|
def backward(self, loss: Tensor):
|
|
loss.backward()
|
|
|
|
def backward_by_grad(self, tensor: Tensor, grad: Tensor):
|
|
torch.autograd.backward(tensors=tensor, grad_tensors=grad)
|
|
|
|
def clip_grad_norm(self, model: nn.Module, max_norm: float):
|
|
if max_norm > 0.0:
|
|
clip_grad_norm_fp32(model.parameters(), max_norm)
|