mirror of https://github.com/hpcaitech/ColossalAI
177 lines
7.6 KiB
Python
177 lines
7.6 KiB
Python
from torch.optim.lr_scheduler import _LRScheduler
|
|
|
|
|
|
class _enable_get_lr_call:
|
|
|
|
def __init__(self, o):
|
|
self.o = o
|
|
|
|
def __enter__(self):
|
|
self.o._get_lr_called_within_step = True
|
|
return self
|
|
|
|
def __exit__(self, type, value, traceback):
|
|
self.o._get_lr_called_within_step = False
|
|
|
|
|
|
class DelayerScheduler(_LRScheduler):
|
|
"""Starts with a flat lr schedule until it reaches N epochs then applies
|
|
the specific scheduler (For example: ReduceLROnPlateau)
|
|
|
|
Args:
|
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
|
delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler.
|
|
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
|
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
|
"""
|
|
|
|
def __init__(self, optimizer, delay_epochs, after_scheduler, last_epoch=-1):
|
|
if delay_epochs < 0:
|
|
raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}')
|
|
self.delay_epochs = delay_epochs
|
|
self.after_scheduler = after_scheduler
|
|
self.finished = False
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def state_dict(self):
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
|
|
if isinstance(state_dict['after_scheduler'], _LRScheduler):
|
|
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
|
|
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
|
|
del state_dict['after_scheduler']
|
|
else:
|
|
raise NotImplementedError()
|
|
return state_dict
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch >= self.delay_epochs:
|
|
if not self.finished:
|
|
self.after_scheduler.base_lrs = self.base_lrs
|
|
self.finished = True
|
|
with _enable_get_lr_call(self.after_scheduler):
|
|
return self.after_scheduler.get_lr()
|
|
|
|
return self.base_lrs
|
|
|
|
def step(self, epoch=None):
|
|
if self.finished:
|
|
if epoch is None:
|
|
self.after_scheduler.step(None)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
self.after_scheduler.step(epoch - self.delay_epochs)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
return super(DelayerScheduler, self).step(epoch)
|
|
|
|
|
|
class WarmupScheduler(_LRScheduler):
|
|
"""Starts with a linear warmup lr schedule until it reaches N epochs then applies
|
|
the specific scheduler (For example: ReduceLROnPlateau).
|
|
|
|
Args:
|
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
|
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler.
|
|
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
|
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
|
"""
|
|
|
|
def __init__(self, optimizer, warmup_epochs, after_scheduler, last_epoch=-1):
|
|
self.warmup_epochs = int(warmup_epochs)
|
|
self.after_scheduler = after_scheduler
|
|
self.finished = False
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def state_dict(self):
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
|
|
if isinstance(state_dict['after_scheduler'], _LRScheduler):
|
|
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
|
|
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
|
|
del state_dict['after_scheduler']
|
|
else:
|
|
raise NotImplementedError()
|
|
return state_dict
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch >= self.warmup_epochs:
|
|
if not self.finished:
|
|
self.after_scheduler.base_lrs = self.base_lrs
|
|
self.finished = True
|
|
return self.after_scheduler.get_lr()
|
|
|
|
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
|
|
|
|
def step(self, epoch=None):
|
|
if self.finished:
|
|
if epoch is None:
|
|
self.after_scheduler.step(None)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
self.after_scheduler.step(epoch - self.warmup_epochs)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
return super().step(epoch)
|
|
|
|
|
|
class WarmupDelayerScheduler(_LRScheduler):
|
|
"""Starts with a linear warmup lr schedule until it reaches N epochs and a flat lr schedule
|
|
until it reaches M epochs then applies the specific scheduler (For example: ReduceLROnPlateau).
|
|
|
|
Args:
|
|
optimizer (:class:`torch.optim.Optimizer`): Wrapped optimizer.
|
|
warmup_epochs (int): Number of epochs to linearly warmup lr until starting applying the scheduler.
|
|
delay_epochs (int): Number of epochs to keep the initial lr until starting applying the scheduler.
|
|
after_scheduler (:class:`torch.optim.lr_scheduler`): After target_epoch, use this scheduler.
|
|
last_epoch (int, optional): The index of last epoch, defaults to -1. When last_epoch=-1,
|
|
the schedule is started from the beginning or When last_epoch=-1, sets initial lr as lr.
|
|
"""
|
|
|
|
def __init__(self, optimizer, warmup_epochs, delay_epochs, after_scheduler, last_epoch=-1):
|
|
if delay_epochs < 0:
|
|
raise ValueError(f'delay_epochs must >= 0, got {delay_epochs}')
|
|
if warmup_epochs < 0:
|
|
raise ValueError(f'warmup_epochs must >= 0, got {warmup_epochs}')
|
|
self.warmup_epochs = warmup_epochs
|
|
self.delay_epochs = delay_epochs
|
|
self.after_scheduler = after_scheduler
|
|
self.finished = False
|
|
super().__init__(optimizer, last_epoch)
|
|
|
|
def state_dict(self):
|
|
state_dict = {key: value for key, value in self.__dict__.items() if key not in 'optimizer'}
|
|
if isinstance(state_dict['after_scheduler'], _LRScheduler):
|
|
state_dict['after_scheduler_type'] = type(state_dict['after_scheduler']).__name__
|
|
state_dict['after_scheduler_dict'] = state_dict['after_scheduler'].state_dict()
|
|
del state_dict['after_scheduler']
|
|
else:
|
|
raise NotImplementedError()
|
|
return state_dict
|
|
|
|
def get_lr(self):
|
|
if self.last_epoch >= self.warmup_epochs + self.delay_epochs:
|
|
if not self.finished:
|
|
self.after_scheduler.base_lrs = self.base_lrs
|
|
# reset lr to base_lr
|
|
for group, base_lr in zip(self.optimizer.param_groups, self.base_lrs):
|
|
group['lr'] = base_lr
|
|
self.finished = True
|
|
with _enable_get_lr_call(self.after_scheduler):
|
|
return self.after_scheduler.get_lr()
|
|
elif self.last_epoch >= self.warmup_epochs:
|
|
return self.base_lrs
|
|
|
|
return [(self.last_epoch + 1) / self.warmup_epochs * lr for lr in self.base_lrs]
|
|
|
|
def step(self, epoch=None):
|
|
if self.finished:
|
|
if epoch is None:
|
|
self.after_scheduler.step(None)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
self.after_scheduler.step(epoch - self.warmup_epochs)
|
|
self._last_lr = self.after_scheduler.get_last_lr()
|
|
else:
|
|
return super().step(epoch)
|