mirror of https://github.com/hpcaitech/ColossalAI
49 lines
2.6 KiB
Python
49 lines
2.6 KiB
Python
import torch
|
|
import torch.nn.functional as F
|
|
from typing import Optional
|
|
from colossalai.tensor.op_wrapper import colo_op_impl
|
|
from colossalai.tensor import ColoTensor, ColoTensorSpec
|
|
from colossalai.nn.loss.loss_1d import VocabParallelCrossEntropyLoss1D
|
|
from ._utils import GeneralTensor, convert_to_colo_tensor
|
|
|
|
|
|
@colo_op_impl(F.cross_entropy)
|
|
def colo_cross_entropy(input_tensor: GeneralTensor,
|
|
target: GeneralTensor,
|
|
weight: Optional[GeneralTensor] = None,
|
|
size_average: Optional[bool] = None,
|
|
ignore_index: int = -100,
|
|
reduce: Optional[bool] = None,
|
|
reduction: str = "mean",
|
|
label_smoothing: float = 0.0):
|
|
assert isinstance(weight, ColoTensor) or isinstance(target, ColoTensor) or isinstance(input_tensor, ColoTensor)
|
|
pg = input_tensor.get_process_group() if isinstance(input_tensor, ColoTensor) else isinstance(target, ColoTensor)
|
|
weight = convert_to_colo_tensor(weight, pg)
|
|
target = convert_to_colo_tensor(target, pg)
|
|
input_tensor = convert_to_colo_tensor(input_tensor, pg)
|
|
|
|
if input_tensor.is_replicate(): # Input is gathered
|
|
assert target.is_replicate() and (weight is None or weight.is_replicate()), \
|
|
"Target tensor and weight tensor both should be complete"
|
|
output = F.cross_entropy(input_tensor,
|
|
target,
|
|
weight=weight,
|
|
size_average=size_average,
|
|
ignore_index=ignore_index,
|
|
reduce=reduce,
|
|
reduction=reduction,
|
|
label_smoothing=label_smoothing)
|
|
return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg))
|
|
elif input_tensor.has_compute_spec(): # Single Model Parallel Applied
|
|
if input_tensor.is_shard_1dcol():
|
|
assert weight is None, "Current TP cross entropy loss function doesn't support passing weight tensor in"
|
|
assert target.is_replicate(), "Target tensor should be complete in TP cross entropy loss function"
|
|
output = VocabParallelCrossEntropyLoss1D()(input_tensor,
|
|
target,
|
|
process_group=input_tensor.process_group.tp_process_group())
|
|
return ColoTensor.from_torch_tensor(output, ColoTensorSpec(pg))
|
|
else:
|
|
raise NotImplementedError
|
|
else:
|
|
raise NotImplementedError
|