ColossalAI/colossalai/nn/_ops/batch_norm.py

34 lines
1.1 KiB
Python

from typing import Optional
import torch.nn.functional as F
from colossalai.tensor import ColoTensor, ColoTensorSpec, ReplicaSpec
from colossalai.tensor.op_wrapper import colo_op_impl
from ._utils import GeneralTensor, convert_to_colo_tensor
@colo_op_impl(F.batch_norm)
def colo_batch_norm(
input: GeneralTensor,
running_mean: Optional[GeneralTensor],
running_var: Optional[GeneralTensor],
weight: Optional[GeneralTensor] = None,
bias: Optional[GeneralTensor] = None,
training: bool = False,
momentum: float = 0.1,
eps: float = 1e-5,
):
assert isinstance(weight, ColoTensor)
running_mean = running_mean.detach()
running_var = running_var.detach()
input = convert_to_colo_tensor(input, weight.get_process_group())
bias = convert_to_colo_tensor(bias, weight.get_process_group())
input = input.redistribute(ReplicaSpec())
bias = bias.redistribute(ReplicaSpec())
output = F.batch_norm(input, running_mean, running_var, weight, bias, training, momentum, eps)
output = ColoTensor.from_torch_tensor(tensor=output, spec=ColoTensorSpec(pg=weight.get_process_group()))
return output