ColossalAI/colossalai/gemini/stateful_tensor.py

210 lines
6.8 KiB
Python

from enum import Enum
from typing import Optional
import torch
from typing import Union
from colossalai.gemini.gemini_context import GeminiMemoryManager
def sizeof_tensor(tensor: torch.Tensor):
return tensor.numel() * tensor.element_size()
class TensorState(Enum):
FREE = 0
HOLD = 1
HOLD_AFTER_FWD = 2
HOLD_AFTER_BWD = 3
COMPUTE = 4
class StatefulTensor(object):
"""A Structure stores a Torch Tensor and labeled states.
Inspired from the paper:
PatrickStar: Parallel Training of Pre-trained Models via Chunk-based Memory Management
https://arxiv.org/abs/2108.05818
"""
# Global Stateful Tensor Manager
GST_MGR = GeminiMemoryManager(TensorState)
def __init__(self, maybe_tensor: Optional[torch.Tensor], state: Optional[TensorState] = TensorState.HOLD) -> None:
self._state = state
self._payload = None
self._payload_size = 0 # byte size of current payload
StatefulTensor.GST_MGR.register_new_instance()
if self._state == TensorState.FREE:
# when the state is free, payload should be None
assert maybe_tensor is None, f"payload has to None if state is {self._state}"
else:
# otherwise, payload should not be None
assert maybe_tensor is not None, f"payload can't be None if state is {self._state}"
self._payload = maybe_tensor
self._payload_size = sizeof_tensor(maybe_tensor)
self.__trans_state_update(TensorState.FREE, state)
def data_ptr(self):
if self._payload is None:
return 0 # if a tensor has no storage, 0 should be returned
return self._payload.data_ptr()
def set_null(self) -> None:
# notice that free stateful tensor do not need to become null again
if self.state != TensorState.FREE:
self.__trans_state_update(self.state, TensorState.FREE)
self.__release()
def is_null(self) -> bool:
if self.state == TensorState.FREE:
# check sanity here
assert self.payload is None
return True
return False
def trans_state(self, state: TensorState) -> None:
if self.state == TensorState.FREE:
# free stateful tensor can't change state
assert state == TensorState.FREE, "Free stateful tensor can't change to other states"
return
self.__trans_state_update(self.state, state)
if state == TensorState.FREE:
self.__release()
else:
self._state = state
def move_to(self, device: Union[torch.device, int]):
assert self.state is not TensorState.FREE, "Can't move free stateful tensor"
if not isinstance(device, torch.device):
to_device = torch.device('cuda', device)
else:
to_device = device
from_device_type = self.device.type
if from_device_type == to_device.type:
# from device == to device
return
# update manager's information
self.__trans_device_update(from_device_type, to_device.type)
self.payload.data = self.payload.data.to(to_device)
def payload_copy(self, tensor) -> None:
self._payload.view(-1).copy_(tensor.view(-1))
def payload_reset(self, tensor) -> None:
assert tensor is not None, "Can't reset None for stateful tensors, please use set_null() instead"
if self.payload is not None:
# release old payload
self.__trans_state_update(self.state, TensorState.FREE)
else:
# otherwise, set the state to HOLD for new payload
self._state = TensorState.HOLD
del self._payload
self._payload = tensor
self._payload_size = sizeof_tensor(tensor)
# record new payload
self.__trans_state_update(TensorState.FREE, self.state)
def payload_relay(self, rhs):
# relay the payload of rhs to current stateful tensor
# can't support null relay right now
assert not rhs.is_null()
# now this function only support stateful tensor that has zero-length payload
# because it doesn't require memory manager updating
# you can extend this function by yourself
assert self.payload_size == 0
self._payload = rhs.payload
self._payload_size = rhs.payload_size
self._state = TensorState.HOLD
self.__trans_state_update(rhs.state, TensorState.HOLD)
rhs.__release()
@property
def payload(self) -> Optional[torch.Tensor]:
return self._payload
@property
def payload_size(self) -> int:
return self._payload_size
@property
def state(self) -> TensorState:
return self._state
@property
def device(self) -> torch.device:
return self._payload.device
@property
def dtype(self) -> torch.dtype:
return self._payload.dtype
@property
def shape(self):
return self._payload.shape
def to(self, device: torch.device):
raise RuntimeError("Use move_to(...) instead of call .to() on StatefulTensor")
def to_(self, device: torch.device):
raise RuntimeError("Use move_to(...) instead of call .to_() on StatefulTensor")
def __release(self):
# release current payload
# shouldn't be visible to users
self._state = TensorState.FREE
self._payload = None
self._payload_size = 0
def __trans_state_update(self, from_state: TensorState, to_state: TensorState):
"""Update global manager when changing the state of a tensor
"""
manager = StatefulTensor.GST_MGR
size = self.payload_size
device_type = self.device.type
if from_state != TensorState.FREE:
manager.state_mem[device_type][from_state] -= size
else:
# when from_state is FREE, the tensor is new to manager
# we should add its memory
manager.total_mem[device_type] += size
if to_state != TensorState.FREE:
manager.state_mem[device_type][to_state] += size
else:
# when to_state is FREE, the tensor will be deleted soon
# we should sub its memory
manager.total_mem[device_type] -= size
def __trans_device_update(self, from_type: str, to_type: str):
"""Update global manager when changing the device of a tensor
"""
manager = StatefulTensor.GST_MGR
size = self.payload_size
state = self.state
# update aggregated information
manager.total_mem[from_type] -= size
manager.total_mem[to_type] += size
# update the information of each state
manager.state_mem[from_type][state] -= size
manager.state_mem[to_type][state] += size
def __del__(self):
self.set_null()
StatefulTensor.GST_MGR.delete_instance()
del self