mirror of https://github.com/hpcaitech/ColossalAI
146 lines
5.0 KiB
Python
146 lines
5.0 KiB
Python
from contextlib import contextmanager
|
|
from enum import Enum
|
|
from functools import partial
|
|
from typing import List
|
|
|
|
import torch
|
|
|
|
from colossalai.gemini.memory_tracer import MemStats, SyncCudaMemoryMonitor
|
|
from colossalai.gemini.tensor_utils import alloc_storage, free_storage
|
|
from colossalai.tensor.param_op_hook import ColoParamOpHook
|
|
|
|
|
|
class TrainingPhase(Enum):
|
|
FORWARD = 0
|
|
BACKWARD = 1
|
|
|
|
|
|
class GradMemStats():
|
|
|
|
def __init__(self) -> None:
|
|
self.unreleased_grad_flag = {}
|
|
self.unreleased_grad_volume = 0
|
|
|
|
def clear(self):
|
|
self.unreleased_grad_flag.clear()
|
|
self.unreleased_grad_volume = 0
|
|
|
|
|
|
class GradMemTracerHook():
|
|
|
|
def __init__(self, grad_stats: GradMemStats):
|
|
self.grad_hook_list = []
|
|
self._grad_stats = grad_stats
|
|
|
|
def grad_handle(self, p, grad):
|
|
assert self._grad_stats.unreleased_grad_flag[p]
|
|
free_storage(grad)
|
|
self._grad_stats.unreleased_grad_volume -= grad.numel() * grad.element_size()
|
|
self._grad_stats.unreleased_grad_flag[p] = False
|
|
|
|
def register_grad_hook(self, module: torch.nn.Module):
|
|
for p in module.parameters():
|
|
if p.requires_grad:
|
|
self.grad_hook_list.append(p.register_hook(partial(self.grad_handle, p)))
|
|
self._grad_stats.unreleased_grad_flag[p] = False
|
|
|
|
def remove_grad_hook(self):
|
|
for hook in self.grad_hook_list:
|
|
hook.remove()
|
|
|
|
|
|
class ParamMemTracerHook(ColoParamOpHook):
|
|
|
|
def __init__(self, memstats: MemStats, gradstats: GradMemStats) -> None:
|
|
super().__init__()
|
|
self._training_phase = TrainingPhase.FORWARD
|
|
self._memstats = memstats
|
|
self._grad_stats = gradstats
|
|
self.mem_monitor = SyncCudaMemoryMonitor()
|
|
|
|
def _free_cuda_params(self, params):
|
|
for p in params:
|
|
if p.data.device.type == "cpu":
|
|
raise NotImplementedError("Only free cuda memory")
|
|
free_storage(p.data)
|
|
|
|
def _allocate_params_on_cuda(self, params: List[torch.nn.Parameter]):
|
|
"""
|
|
move params to cuda
|
|
|
|
Args:
|
|
params (List[torch.nn.Parameter]): target params
|
|
|
|
Raises:
|
|
NotImplementedError: raise error when param has cpu grad
|
|
"""
|
|
for p in params:
|
|
cur_dev = p.data.device.type
|
|
if cur_dev == "cpu":
|
|
if p.grad is not None and p.grad.device.type == "cpu":
|
|
raise NotImplementedError("Only run in forward propagation")
|
|
p.data = torch.empty(p.data.shape,
|
|
device="cuda",
|
|
dtype=p.data.dtype,
|
|
requires_grad=p.data.requires_grad)
|
|
elif cur_dev == "cuda":
|
|
alloc_storage(p.data)
|
|
|
|
def record_model_data_volume(self, params):
|
|
"""
|
|
get cuda model data used by params
|
|
"""
|
|
data_volume = self._grad_stats.unreleased_grad_volume
|
|
for p in params:
|
|
cur_model_data_volume = p.data.numel() * p.data.element_size()
|
|
data_volume += cur_model_data_volume
|
|
if self._training_phase == TrainingPhase.BACKWARD and p.requires_grad:
|
|
# add param.grad, actually param.grad is None in this time
|
|
data_volume += cur_model_data_volume
|
|
if not self._grad_stats.unreleased_grad_flag[p]:
|
|
self._grad_stats.unreleased_grad_volume += cur_model_data_volume
|
|
self._grad_stats.unreleased_grad_flag[p] = True
|
|
# record max non model data used for this Op
|
|
self._memstats.record_max_cuda_model_data(data_volume)
|
|
|
|
def pre_op(self, params):
|
|
max_cuda_used_pre_op = self.mem_monitor.finish()
|
|
# record max cuda overall data for prev OP.
|
|
self._memstats.record_max_cuda_overall_data(max_cuda_used_pre_op)
|
|
# record max cuda non model data for prev OP.
|
|
self._memstats.calc_max_cuda_non_model_data()
|
|
|
|
self._allocate_params_on_cuda(params)
|
|
# record max cuda model data for current OP
|
|
self.record_model_data_volume(params)
|
|
|
|
self.mem_monitor.start()
|
|
self._memstats.increase_preop_step(params)
|
|
|
|
def post_op(self, params):
|
|
self._free_cuda_params(params)
|
|
|
|
def pre_forward(self, params: List[torch.Tensor]) -> None:
|
|
self.pre_op(params)
|
|
|
|
def post_forward(self, params: List[torch.Tensor]) -> None:
|
|
self.post_op(params)
|
|
|
|
def pre_backward(self, params: List[torch.Tensor]) -> None:
|
|
self.pre_op(params)
|
|
|
|
def post_backward(self, params: List[torch.Tensor]) -> None:
|
|
self.post_op(params)
|
|
|
|
@contextmanager
|
|
def switch_training_phase(self, training_phase: TrainingPhase = TrainingPhase.BACKWARD):
|
|
old_training_phase = self._training_phase
|
|
try:
|
|
self._training_phase = training_phase
|
|
yield
|
|
finally:
|
|
self._training_phase = old_training_phase
|
|
|
|
switch_to_backward = switch_training_phase
|
|
switch_to_forward = partial(switch_to_backward, training_phase=TrainingPhase.FORWARD)
|