mirror of https://github.com/hpcaitech/ColossalAI
106 lines
4.1 KiB
Python
106 lines
4.1 KiB
Python
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.fx import symbolic_trace
|
|
|
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
|
from colossalai.fx.profiler import calculate_fwd_out, calculate_fwd_tmp, is_compatible_with_meta
|
|
from colossalai.gemini.chunk import ChunkManager
|
|
|
|
if is_compatible_with_meta():
|
|
from colossalai.fx.profiler import MetaTensor
|
|
|
|
from .chunk_memstats_collector import ChunkMemStatsCollector
|
|
|
|
|
|
class ModuleInfos:
|
|
|
|
def __init__(self, module: torch.nn.Module, module_name: str, module_full_name: str,
|
|
parent_module: torch.nn.Module):
|
|
self.module = module
|
|
self.module_name = module_name
|
|
self.module_full_name = module_full_name
|
|
self.parent_module = parent_module
|
|
|
|
|
|
class StaticMemStatsCollector(ChunkMemStatsCollector):
|
|
"""
|
|
A Static Memory statistic collector.
|
|
"""
|
|
|
|
def __init__(self, module: nn.Module, chunk_manager: ChunkManager) -> None:
|
|
super().__init__(chunk_manager)
|
|
self.module = module
|
|
self.module_info_list = []
|
|
|
|
def init_mem_stats(self, *inputs):
|
|
|
|
self.register_opnodes_recursively(self.module)
|
|
self.refactor_module()
|
|
|
|
self.module = self.module.cpu()
|
|
self.module.train()
|
|
|
|
data = [MetaTensor(torch.rand(inp.shape, device='meta'), fake_device='cpu') for inp in inputs]
|
|
gm = symbolic_trace(self.module)
|
|
interp = MetaInfoProp(gm)
|
|
interp.propagate(*data)
|
|
|
|
total_mem = 0
|
|
for inp in inputs:
|
|
total_mem += inp.numel() * inp.element_size()
|
|
last_node = None
|
|
module_name_list = [mInfo.module_full_name for mInfo in self.module_info_list]
|
|
for node in gm.graph.nodes:
|
|
total_mem = total_mem + calculate_fwd_tmp(node) + calculate_fwd_out(node)
|
|
if node.op == "call_module":
|
|
if node.name.endswith("_0") and node.name[:-2] in module_name_list:
|
|
self._non_model_data_cuda_list.append(total_mem)
|
|
last_node = node
|
|
self._non_model_data_cuda_list.append(total_mem)
|
|
self._non_model_data_cuda_list = self._non_model_data_cuda_list[1:]
|
|
|
|
cur_module_mem_fwd = 0
|
|
cur_module_mem_bwd = 0
|
|
grad_module_out = last_node.meta["fwd_mem_out"]
|
|
for node in gm.graph.nodes.__reversed__():
|
|
cur_module_mem_fwd = cur_module_mem_fwd + calculate_fwd_tmp(node) + calculate_fwd_out(node)
|
|
cur_module_mem_bwd = cur_module_mem_bwd + node.meta["bwd_mem_tmp"] + node.meta["bwd_mem_out"]
|
|
if node.op == "call_module":
|
|
if node.name.endswith("_0") and node.name[:-2] in module_name_list:
|
|
self._non_model_data_cuda_list.append(total_mem + grad_module_out + cur_module_mem_bwd)
|
|
total_mem = total_mem - cur_module_mem_fwd
|
|
cur_module_mem_fwd = 0
|
|
cur_module_mem_bwd = 0
|
|
grad_module_out = node.meta["bwd_mem_out"]
|
|
|
|
self._step_total = len(self._non_model_data_cuda_list)
|
|
self.recover_module()
|
|
|
|
def refactor_module(self):
|
|
for modInfo in self.module_info_list:
|
|
temp_node = nn.Sequential(nn.ReLU(), modInfo.module)
|
|
modInfo.parent_module.__setattr__(modInfo.module_name, temp_node)
|
|
|
|
def recover_module(self):
|
|
for modInfo in self.module_info_list:
|
|
modInfo.parent_module.__setattr__(modInfo.module_name, modInfo.module)
|
|
|
|
def register_opnodes_recursively(self,
|
|
module: torch.nn.Module,
|
|
name: str = "",
|
|
full_name: str = "",
|
|
parent_module: Optional[torch.nn.Module] = None):
|
|
|
|
assert isinstance(module, torch.nn.Module)
|
|
|
|
for child_name, child in module.named_children():
|
|
self.register_opnodes_recursively(child, child_name, full_name + "_" + child_name, module)
|
|
|
|
# Early return on modules with no parameters.
|
|
if len(list(module.parameters(recurse=False))) == 0:
|
|
return
|
|
|
|
self.module_info_list.append(ModuleInfos(module, name, full_name[1:], parent_module))
|