mirror of https://github.com/hpcaitech/ColossalAI
100 lines
3.6 KiB
Python
100 lines
3.6 KiB
Python
import torch.nn
|
|
|
|
from colossalai.gemini.memory_tracer import MemStats
|
|
from colossalai.gemini.ophooks.runtime_mem_tracer_hook import GradMemStats, GradMemTracerHook, ParamMemTracerHook
|
|
from colossalai.nn.parallel.data_parallel import _cast_float
|
|
from colossalai.tensor.param_op_hook import ColoParamOpHookManager
|
|
|
|
__all__ = ['RuntimeMemTracer']
|
|
|
|
|
|
class RuntimeMemTracer():
|
|
"""RuntimeMemTracer for the module training using ColoParameter.
|
|
|
|
Trace non-model memory usage during fwd+bwd process.
|
|
It is obtained by using a tensor with the same shape as the training process as the inputs
|
|
and running an single fwd+bwd to trace the statistics.
|
|
|
|
NOTE()
|
|
1. The premise to use this tracer is that the target DNN execute the same operations at each iterations,
|
|
2. Module buffers are viewed as non-model data.
|
|
"""
|
|
|
|
def __init__(self, module: torch.nn.Module, dtype: torch.dtype = torch.half):
|
|
super().__init__()
|
|
self.module = module
|
|
self.dtype = dtype
|
|
self._gradstat = GradMemStats()
|
|
self._memstats = MemStats()
|
|
self.param_op_hook = ParamMemTracerHook(self._memstats, self._gradstat)
|
|
self.grad_hook = GradMemTracerHook(self._gradstat)
|
|
self.cpu_param_data_dict = {}
|
|
|
|
for p in module.parameters():
|
|
p.data = p.data.to(dtype)
|
|
|
|
self._cast_buffers_to_cuda_dtype()
|
|
|
|
def parameters_in_runtime_order(self):
|
|
return self._memstats._param_runtime_order.generate()
|
|
|
|
def memstats(self):
|
|
return self._memstats
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
return self.forward(*args, **kwargs)
|
|
|
|
def _backup_params(self):
|
|
"""
|
|
The function is called before forward. Backup model params on cpu.
|
|
"""
|
|
for p in self.module.parameters():
|
|
self.cpu_param_data_dict[p] = torch.empty(p.data.shape, dtype=self.dtype, device="cpu")
|
|
self.cpu_param_data_dict[p].copy_(p.data)
|
|
|
|
def _restore_params(self):
|
|
"""
|
|
This function is called after backward. Restore model params.
|
|
"""
|
|
for p in self.module.parameters():
|
|
p.data = torch.empty(p.data.shape, dtype=self.dtype, device="cpu", requires_grad=p.data.requires_grad)
|
|
p.data.copy_(self.cpu_param_data_dict[p])
|
|
self.cpu_param_data_dict.clear()
|
|
|
|
def _pre_forward(self):
|
|
self._clear_cuda_mem_info()
|
|
self._backup_params()
|
|
self.grad_hook.register_grad_hook(self.module)
|
|
self.param_op_hook.mem_monitor.start()
|
|
|
|
def forward(self, *args, **kwargs):
|
|
args, kwargs = _cast_float(args, self.dtype), _cast_float(kwargs, self.dtype)
|
|
self.module.zero_grad(set_to_none=True)
|
|
self._pre_forward()
|
|
with ColoParamOpHookManager.use_hooks(self.param_op_hook):
|
|
outputs = self.module(*args, **kwargs)
|
|
return outputs
|
|
|
|
def backward(self, loss):
|
|
with self.param_op_hook.switch_to_backward(), ColoParamOpHookManager.use_hooks(self.param_op_hook):
|
|
loss.backward()
|
|
self._post_backward()
|
|
|
|
def _post_backward(self):
|
|
cuda_volume = self.param_op_hook.mem_monitor.finish()
|
|
self._memstats.record_max_cuda_overall_data(cuda_volume)
|
|
# calc the last Op non model data
|
|
self._memstats.calc_max_cuda_non_model_data()
|
|
self.grad_hook.remove_grad_hook()
|
|
self._restore_params()
|
|
|
|
def _clear_cuda_mem_info(self):
|
|
self._memstats.clear()
|
|
self._gradstat.clear()
|
|
|
|
def _cast_buffers_to_cuda_dtype(self):
|
|
for buffer in self.module.buffers():
|
|
buffer.data = buffer.cuda()
|
|
if torch.is_floating_point(buffer):
|
|
buffer.data = buffer.data.to(self.dtype)
|