ColossalAI/colossalai/amp/naive_amp/naive_amp.py

162 lines
6.0 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from typing import Any
import torch
import torch.distributed as dist
import torch.nn as nn
from torch import Tensor
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from torch.distributed import ReduceOp
from torch.optim import Optimizer
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.nn.optimizer import ColossalaiOptimizer
from ._fp16_optimizer import FP16Optimizer
class NaiveAMPOptimizer(ColossalaiOptimizer):
"""A wrapper class for optimizer to cast all parameters to fp16
Args:
optim (torch.optim.Optimizer): A normal optimizer like Adam or SGD.
grad_scaler (BaseGradScaler): grad scaler for gradient chose in
``constant_grad_scaler`` or ``dynamic_grad_scaler``.
clip_grad_norm (float, optional): clip gradients with this global L2 norm. Default 0.
verbose (bool, optional): if set to `True`, will print debug info. Default False.
Note:
clipping is ignored if ``clip_grad_norm`` equals 0.
"""
def __init__(self, optim: Optimizer, *args, **kwargs):
optim = FP16Optimizer(optim, *args, **kwargs)
super().__init__(optim)
def backward(self, loss: Tensor):
self.optim.backward(loss)
def step(self):
return self.optim.step()
def clip_grad_norm(self, model: nn.Module, max_norm: float):
if self.optim.max_norm == max_norm:
return
raise RuntimeError("NaiveAMP optimizer has clipped gradients during optimizer.step(). "
"If you have supplied clip_grad_norm in the amp_config, "
"executing the method clip_grad_norm is not allowed.")
class NaiveAMPModel(nn.Module):
r"""A wrapper class for model to cast the model into fp16 and
automatically cast the input and output
Args:
model (torch.nn.Module): torch.nn.Module to be wrapped.
output_to_fp32 (bool, optional): Whether cast output of this module into fp32. (Default: True)
parallel_mode (:class:`colossalai.context.ParallelMode`): Parallel group mode used in this module.
(Default: ``ParallelMode.DATA``)
sync_buffer (bool, optional): whether to synchronize buffer. (Default: True)
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
def __init__(self,
model: nn.Module,
output_to_fp32: bool = True,
parallel_mode: ParallelMode = ParallelMode.DATA,
sync_buffer: bool = True):
super().__init__()
self.model = model.half()
self._output_to_fp32 = output_to_fp32
self._sync_buf = sync_buffer
if gpc.is_initialized(parallel_mode) and gpc.get_world_size(parallel_mode) > 1:
self._process_group = gpc.get_group(parallel_mode)
self._world_size = gpc.get_world_size(parallel_mode)
else:
self._process_group = None
self._world_size = 1
self._sync_buf = False
self._first_eval_run = False
@property
def sync_buffer(self):
return self._sync_buf
@sync_buffer.setter
def sync_buffer(self, state: bool):
self._sync_buf = state
def _convert_to_fp16(self, input_: Any):
if isinstance(input_, Tensor) and input_.dtype == torch.float32:
input_ = input_.half()
return input_
def _convert_to_fp32(self, input_: Any):
if isinstance(input_, Tensor) and input_.dtype == torch.float16:
input_ = input_.float()
return input_
def _reduce_module_buffer(self):
"""
All-reduce the buffers (e.g. running stats of batch normalization) across
data parallel ranks so that all the ranks will produce consistent results
when given the same input
"""
buf_list = []
# find valid buffers
for buf in self.model.buffers():
if buf is not None:
buf_list.append(buf)
# reduce buffers across data parallel ranks
if buf_list:
coalesced_buf = _flatten_dense_tensors(buf_list)
coalesced_buf.div_(self._world_size)
dist.all_reduce(coalesced_buf, op=ReduceOp.SUM, group=self._process_group)
unflattened_buf_list = _unflatten_dense_tensors(coalesced_buf, buf_list)
for old, new in zip(buf_list, unflattened_buf_list):
old.copy_(new)
def eval(self):
self.model.eval()
# we only sync buffer in the first eval iteration
# so that future eval iterations can be done without communication
self._first_eval_run = True
def forward(self, *args, **kwargs):
# reduce buffers after forward will lead to error
# as we cannot change the variables needed for gradient computation after forward
# so we sync buffer before forward
if (self.training or self._first_eval_run) and self._sync_buf:
with torch.no_grad():
self._reduce_module_buffer()
if self._first_eval_run:
self._first_eval_run = False
if args:
args = [self._convert_to_fp16(arg) for arg in args]
if kwargs:
for k, v in kwargs.items():
kwargs[k] = self._convert_to_fp16(v)
out = self.model(*args, **kwargs)
if self._output_to_fp32:
if isinstance(out, Tensor):
out = self._convert_to_fp32(out)
elif isinstance(out, (tuple, list)):
out = [self._convert_to_fp32(val) for val in out]
elif isinstance(out, dict):
out = {key: self._convert_to_fp32(val) for key, val in out.items()}
return out