ColossalAI/tests/test_infer/test_inference_engine.py

59 lines
2.1 KiB
Python
Executable File

import pytest
from transformers import AutoTokenizer, GenerationConfig
import colossalai
from colossalai.inference.config import InferenceConfig
from colossalai.inference.core.engine import InferenceEngine
from colossalai.testing import spawn
def check_inference_engine(test_cai=False):
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
model = transformers.LlamaForCausalLM(
transformers.LlamaConfig(
vocab_size=50000, hidden_size=512, intermediate_size=1536, num_attention_heads=4, num_hidden_layers=4
)
)
inputs = [
"介绍一下今天的北京",
"介绍一下武汉",
]
if test_cai:
inference_config = InferenceConfig(max_output_len=1)
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True)
inference_engine.add_request(prompts=inputs)
assert inference_engine.request_handler._has_waiting()
generation_config = GenerationConfig(top_k=2, top_p=0.8, do_sample=True)
outputs = inference_engine.generate(generation_config)
else:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
generation_config = GenerationConfig(
top_k=2, top_p=0.8, do_sample=True, pad_token_id=tokenizer.pad_token_id, max_new_tokens=1
)
outputs = model.generate(inputs, generation_config=generation_config)
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
return outputs
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, port=port, host="localhost")
check_inference_engine(True)
check_inference_engine(False)
# TODO: There are some bugs in sampler.
# for s1, s2 in zip(cai_outputs, transformer_outputs):
# assert s1 == s2
@pytest.mark.dist
def test_inference_engine():
spawn(run_dist, 1)
if __name__ == "__main__":
test_inference_engine()