You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_sharded_optim_state_di...

94 lines
3.3 KiB

import pytest
import colossalai
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from functools import partial
from tests.test_tensor.common_utils import set_seed
from tests.components_to_test.registry import non_distributed_component_funcs
from colossalai.testing import parameterize
from colossalai.nn.optimizer import HybridAdam
from colossalai.zero.init_ctx import ZeroInitContext
from colossalai.zero.shard_utils import TensorShardStrategy
from colossalai.zero.sharded_model import ShardedModelV2
from colossalai.zero.sharded_optim import ShardedOptimizerV2
from colossalai.tensor import ProcessGroup
def init_zero(model_builder, placement_policy):
device = get_current_device() if placement_policy == 'cuda' else torch.device('cpu')
shard_strategy = TensorShardStrategy()
with ZeroInitContext(target_device=device, shard_strategy=shard_strategy, shard_param=True):
model = model_builder()
model = ShardedModelV2(
model,
shard_strategy,
tensor_placement_policy=placement_policy,
reuse_fp16_shard=True,
)
optim = HybridAdam(model.parameters(), lr=1e-3)
optim = ShardedOptimizerV2(model, optim, initial_scale=32)
return model, optim
def run_step(model, optim, criterion, data, label):
optim.zero_grad()
logits = model(data)
loss = criterion(logits, label)
optim.backward(loss)
optim.step()
def check_state_dict_eq(state_dict, other):
for p, state in state_dict['state'].items():
other_state = other['state'][p]
for k, v in state.items():
if isinstance(v, torch.Tensor):
assert torch.allclose(v, other_state[k], atol=1e-3), f'{v} vs {other_state[k]}'
else:
assert v == other_state[k]
@parameterize('placement_policy', ['cuda', 'cpu'])
def run_nested_model(placement_policy):
get_components_func = non_distributed_component_funcs.get_callable('simple_net')
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
set_seed(42)
model, optim = init_zero(model_builder, placement_policy)
set_seed(42)
model_copy, optim_copy = init_zero(model_builder, placement_policy)
model.train()
model_copy.train()
pg = ProcessGroup()
set_seed(pg.dp_local_rank())
data_iter = iter(train_dataloader)
data, label = map(lambda x: x.cuda(), next(data_iter))
run_step(model, optim, criterion, data, label)
optim_copy.load_state_dict(optim.state_dict())
check_state_dict_eq(optim.state_dict(), optim_copy.state_dict())
data, label = map(lambda x: x.cuda(), next(data_iter))
run_step(model_copy, optim_copy, criterion, data, label)
def run_dist(rank, world_size, port):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_nested_model()
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@rerun_if_address_is_in_use()
def test_sharded_optim_state_dist(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_sharded_optim_state_dist(2)