mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
97 lines
2.8 KiB
97 lines
2.8 KiB
# referenced from Megatron and used to testify communication
|
|
|
|
import os
|
|
import os.path as osp
|
|
from functools import partial
|
|
from pathlib import Path
|
|
|
|
import colossalai
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.multiprocessing as mp
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.initialize import launch
|
|
from colossalai.utils import free_port, get_dataloader, print_rank_0
|
|
from colossalai.testing import rerun_on_exception
|
|
from torchvision import transforms
|
|
from torchvision.datasets import CIFAR10
|
|
from torchvision.models import resnet18
|
|
|
|
|
|
BATCH_SIZE = 8
|
|
|
|
CONFIG=dict(
|
|
NUM_MICRO_BATCHES=2,
|
|
parallel = dict(
|
|
pipeline=dict(size=2),
|
|
tensor=dict(size=1, mode=None)
|
|
)
|
|
)
|
|
|
|
def run_schedule(rank, world_size, port):
|
|
launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
# build model
|
|
model = resnet18(num_classes=10)
|
|
|
|
if gpc.get_local_rank(ParallelMode.PIPELINE) == 0:
|
|
model = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool, model.layer1, model.layer2)
|
|
elif gpc.get_local_rank(ParallelMode.PIPELINE) == 1:
|
|
|
|
class Flatten(nn.Module):
|
|
|
|
def forward(self, x):
|
|
return torch.flatten(x, 1)
|
|
|
|
model = nn.Sequential(model.layer3, model.layer4, model.avgpool, Flatten(), model.fc)
|
|
|
|
print_rank_0('model is created')
|
|
|
|
train_dataset = CIFAR10(root=Path(os.environ['DATA']),
|
|
download=True,
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]),
|
|
]))
|
|
|
|
train_dataloader = get_dataloader(
|
|
dataset=train_dataset,
|
|
shuffle=True,
|
|
add_sampler=True,
|
|
batch_size=BATCH_SIZE,
|
|
pin_memory=True,
|
|
)
|
|
|
|
# build criterion
|
|
criterion = torch.nn.CrossEntropyLoss()
|
|
|
|
# optimizer
|
|
optimizer = torch.optim.Adam(model.parameters(), lr=0.001, weight_decay=0)
|
|
|
|
# initialize
|
|
engine, train_dataloader, _, _ = colossalai.initialize(model, optimizer, criterion, train_dataloader)
|
|
|
|
# build pipeline schedule
|
|
schedule = engine.schedule
|
|
|
|
# run schedule
|
|
data_iter = iter(train_dataloader)
|
|
schedule.forward_backward_step(engine, data_iter)
|
|
|
|
gpc.destroy()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
|
def test_pipeline_schedule():
|
|
world_size = 2
|
|
run_func = partial(run_schedule, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_pipeline_schedule()
|