mirror of https://github.com/hpcaitech/ColossalAI
363 lines
12 KiB
Python
363 lines
12 KiB
Python
import os
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.shardformer import PipelineGradientCheckpointConfig
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
from colossalai.testing import clear_cache_before_run, parameterize, rerun_if_address_is_in_use, spawn
|
|
from tests.kit.model_zoo import model_zoo
|
|
from tests.test_shardformer.test_model._utils import (
|
|
build_model_from_hybrid_plugin,
|
|
check_all_grad_tensors,
|
|
check_loss,
|
|
check_output_hidden_state,
|
|
check_weight,
|
|
get_grad_tensors_for_check,
|
|
run_forward_backward_with_hybrid_plugin,
|
|
unwrap_model,
|
|
)
|
|
|
|
os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true"
|
|
|
|
|
|
def check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config):
|
|
enable_gradient_checkpointing = test_config.pop("enable_gradient_checkpointing", False)
|
|
org_model, org_optimizer, sharded_model, sharded_optimizer, criterion, booster = build_model_from_hybrid_plugin(
|
|
model_fn, loss_fn, test_config
|
|
)
|
|
if enable_gradient_checkpointing:
|
|
# org_model.gradient_checkpointing_enable()
|
|
sharded_model.unwrap().gradient_checkpointing_enable()
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
)
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
tp_group = booster.plugin.tp_group
|
|
|
|
# unwrap model
|
|
command_model = unwrap_model(org_model, "CohereModel", "model")
|
|
shard_command_model = unwrap_model(sharded_model, "CohereModel", "model")
|
|
|
|
row_layer_for_check = ["layers[0].self_attn.q_proj", "embed_tokens"]
|
|
col_layer_for_check = ["layers[0].self_attn.o_proj"]
|
|
# Here we check the grad of layernorm because an all-reduce operation should be performed during sequence parallelism
|
|
norm_layer_for_check = ["layers[0].input_layernorm", "layers[1].input_layernorm"]
|
|
|
|
# During pipeline parallelism, we cannot get the grad of norm layer during first stage, so we only check this when pp is not enbaled
|
|
if stage_manager is None:
|
|
norm_layer_for_check.append("norm")
|
|
|
|
# Check the grad when using ZeRO-1 and ZeRO-2
|
|
if (
|
|
booster.plugin.zero_stage in [1, 2]
|
|
and booster.plugin.shard_config.pipeline_stage_manager is None
|
|
and booster.plugin.shard_config.enable_sequence_parallelism
|
|
and booster.plugin.shard_config.sequence_parallelism_mode == "all_to_all"
|
|
):
|
|
for p1, p2 in zip(command_model.parameters(), sharded_optimizer._master_param_groups_of_current_rank[0]):
|
|
working_p = sharded_optimizer.master_to_working_param[id(p2)]
|
|
grads = sharded_optimizer.get_partitioned_gradients_by_param_id(0, id(working_p))
|
|
grad_index = (
|
|
0 if sharded_optimizer._partition_grads else sharded_optimizer.pid_to_bucket_store[id(p2)].local_rank
|
|
)
|
|
grad = grads[grad_index]
|
|
sharded_grad = p1.grad.view(-1).chunk(dist.get_world_size())[dist.get_rank()]
|
|
assert_close(sharded_grad, grad[: sharded_grad.shape[0]], atol=5e-3, rtol=5e-3, check_dtype=False)
|
|
|
|
# Save gradient tensors for comparison between the original model and the sharded model before optimizer step.
|
|
grads_to_check = {}
|
|
if (stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True)) and booster.plugin.zero_stage == 0:
|
|
if test_config["precision"] == "fp32":
|
|
atol, rtol = 1e-6, 1e-4
|
|
else:
|
|
atol, rtol = 5e-3, 5e-3
|
|
row_layer_grads = get_grad_tensors_for_check(
|
|
command_model,
|
|
shard_command_model,
|
|
row_layer_for_check,
|
|
tp_group,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
dim=0,
|
|
verbose=False,
|
|
)
|
|
col_layer_grads = get_grad_tensors_for_check(
|
|
command_model,
|
|
shard_command_model,
|
|
col_layer_for_check,
|
|
tp_group,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
dim=1,
|
|
verbose=False,
|
|
)
|
|
norm_layer_grads = get_grad_tensors_for_check(
|
|
command_model,
|
|
shard_command_model,
|
|
norm_layer_for_check,
|
|
tp_group,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
dim=1,
|
|
verbose=False,
|
|
)
|
|
grads_to_check.update(col_layer_grads)
|
|
grads_to_check.update(row_layer_grads)
|
|
grads_to_check.update(norm_layer_grads)
|
|
|
|
# optimizer executes step
|
|
org_optimizer.step()
|
|
sharded_optimizer.step()
|
|
|
|
# check last hidden state & loss
|
|
if stage_manager is None or stage_manager.is_last_stage(ignore_chunk=True):
|
|
if test_config["precision"] == "fp32":
|
|
atol, rtol = 1e-5, 1e-3
|
|
else:
|
|
atol, rtol = 5e-3, 5e-3
|
|
|
|
if org_model.__class__.__name__ == "CohereModel":
|
|
check_output_hidden_state(org_output, sharded_output, stage_manager, atol=atol, rtol=rtol)
|
|
|
|
check_loss(org_loss, sharded_loss, atol=atol, rtol=rtol)
|
|
|
|
# check weights
|
|
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
|
|
if test_config["precision"] == "fp32":
|
|
atol, rtol = 5e-4, 1e-3
|
|
else:
|
|
atol, rtol = 5e-3, 5e-3
|
|
check_weight(
|
|
command_model,
|
|
shard_command_model,
|
|
col_layer_for_check,
|
|
tp_group,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
dim=1,
|
|
verbose=False,
|
|
)
|
|
|
|
# check grads
|
|
check_all_grad_tensors(grads_to_check)
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{ # Ulysess + Flash attention
|
|
"tp_size": 1,
|
|
"pp_size": 2,
|
|
"sp_size": 2,
|
|
"num_microbatches": 2,
|
|
"enable_sequence_parallelism": True,
|
|
"sequence_parallelism_mode": "all_to_all",
|
|
"enable_flash_attention": True,
|
|
"use_lazy_init": True,
|
|
"zero_stage": 1,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 2,
|
|
"sp_size": 2,
|
|
"num_microbatches": 2,
|
|
"enable_sequence_parallelism": True,
|
|
"sequence_parallelism_mode": "split_gather",
|
|
"enable_flash_attention": True,
|
|
"use_lazy_init": True,
|
|
"zero_stage": 1,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 2,
|
|
"sp_size": 2,
|
|
"num_microbatches": 2,
|
|
"enable_sequence_parallelism": True,
|
|
"sequence_parallelism_mode": "ring",
|
|
"enable_flash_attention": True,
|
|
"use_lazy_init": True,
|
|
"zero_stage": 1,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 1,
|
|
"num_microbatches": 1,
|
|
"enable_sequence_parallelism": True,
|
|
"sequence_parallelism_mode": "ring",
|
|
"enable_flash_attention": True,
|
|
"use_lazy_init": True,
|
|
"zero_stage": 2,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 4,
|
|
"pp_size": 1,
|
|
"num_microbatches": 1,
|
|
"enable_sequence_parallelism": True,
|
|
"sequence_parallelism_mode": "split_gather",
|
|
"enable_flash_attention": False,
|
|
"use_lazy_init": True,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 1,
|
|
"pp_size": 1,
|
|
"sp_size": 2,
|
|
"num_microbatches": 1,
|
|
"enable_sequence_parallelism": True,
|
|
"sequence_parallelism_mode": "all_to_all",
|
|
"use_lazy_init": True,
|
|
"zero_stage": 2,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 2,
|
|
"num_microbatches": 2,
|
|
"enable_all_optimization": True,
|
|
"use_lazy_init": True,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
"enable_gradient_checkpointing": True,
|
|
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(gradient_checkpointing_ratio=0.5),
|
|
},
|
|
{
|
|
"tp_size": 1,
|
|
"pp_size": 2,
|
|
"num_microbatches": 4,
|
|
"use_lazy_init": False,
|
|
"precision": "fp32",
|
|
"enable_gradient_checkpointing": True,
|
|
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(num_ckpt_layers_per_stage=[4, 0]),
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 1,
|
|
"enable_all_optimization": True,
|
|
"use_lazy_init": True,
|
|
"zero_stage": 2,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 1,
|
|
"pp_size": 2,
|
|
"num_microbatches": 2,
|
|
"enable_all_optimization": True,
|
|
"use_lazy_init": True,
|
|
"zero_stage": 1,
|
|
"precision": "fp16",
|
|
"initial_scale": 1,
|
|
},
|
|
],
|
|
)
|
|
def run_command_test(test_config):
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_command", "transformers_command_for_casual_lm")
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
|
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 2,
|
|
"num_microbatches": 4,
|
|
"enable_all_optimization": False,
|
|
"use_lazy_init": False,
|
|
"precision": "fp32",
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 2,
|
|
"num_microbatches": 4,
|
|
"enable_all_optimization": False,
|
|
"use_lazy_init": False,
|
|
"precision": "fp16",
|
|
"zero_stage": 1,
|
|
"initial_scale": 1,
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"pp_size": 2,
|
|
"pp_style": "interleaved",
|
|
"num_model_chunks": 2,
|
|
"num_microbatches": 4,
|
|
"enable_all_optimization": False,
|
|
"precision": "fp16",
|
|
"zero_stage": 1,
|
|
"initial_scale": 1,
|
|
"enable_gradient_checkpointing": True,
|
|
"gradient_checkpoint_config": PipelineGradientCheckpointConfig(
|
|
num_ckpt_layers_per_stage=[0, 1, 2, 2],
|
|
),
|
|
},
|
|
],
|
|
)
|
|
def run_command_3d_test(test_config):
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_command", "transformers_command_for_casual_lm")
|
|
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
check_forward_backward(model_fn, data_gen_fn, output_transform_fn, loss_fn, test_config)
|
|
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def check_command(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
run_command_test()
|
|
|
|
|
|
def check_command_3d(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
run_command_3d_test()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
@clear_cache_before_run()
|
|
def test_command():
|
|
spawn(check_command, 4)
|
|
|
|
|
|
@pytest.mark.largedist
|
|
@rerun_if_address_is_in_use()
|
|
@clear_cache_before_run()
|
|
def test_command_3d():
|
|
spawn(check_command_3d, 8)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_command()
|
|
test_command_3d()
|