mirror of https://github.com/hpcaitech/ColossalAI
162 lines
5.7 KiB
Python
162 lines
5.7 KiB
Python
import os
|
|
import random
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch.multiprocessing import Manager
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaForCausalLM, LlamaTokenizer
|
|
|
|
import colossalai
|
|
import colossalai.inference.modeling.policy as policy
|
|
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig
|
|
from colossalai.inference.core.engine import InferenceEngine
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
|
|
# NOTE: To test a model with the inference engine, you need to provide the path to your
|
|
# local pretrained model weights in the MODEL_MAP dictionary
|
|
MODEL_MAP = {
|
|
"baichuan": {
|
|
"model": AutoModelForCausalLM,
|
|
"tokenizer": AutoTokenizer,
|
|
"policy": policy.NoPaddingBaichuanModelInferPolicy,
|
|
"model_name_or_path": "baichuan-inc/Baichuan2-13B-Base", # provide the path to local model weights
|
|
},
|
|
"llama": {
|
|
"model": LlamaForCausalLM,
|
|
"tokenizer": LlamaTokenizer,
|
|
"policy": policy.NoPaddingLlamaModelInferPolicy,
|
|
"model_name_or_path": "meta-llama/Llama-2-70b-hf",
|
|
},
|
|
}
|
|
|
|
MODELS_TO_TEST = ["llama", "baichuan"] # Specify the models to test
|
|
|
|
|
|
@parameterize("model", MODELS_TO_TEST)
|
|
@parameterize("prompt_template", [None, "model_specific"])
|
|
@parameterize("do_sample", [False])
|
|
@parameterize("use_cuda_kernel", [True])
|
|
@pytest.mark.largedist
|
|
@rerun_if_address_is_in_use()
|
|
def test_model(model, prompt_template, do_sample, use_cuda_kernel):
|
|
model_path = MODEL_MAP[model]["model_name_or_path"]
|
|
if not os.path.exists(model_path):
|
|
pytest.skip(
|
|
f"There is no local model address included for {model}, please replace this address with a valid one."
|
|
)
|
|
|
|
if prompt_template == "model_specific":
|
|
prompt_template = model
|
|
|
|
model_config = MODEL_MAP[model]
|
|
|
|
kwargs1 = {
|
|
"model": model,
|
|
"use_engine": True,
|
|
"prompt_template": prompt_template,
|
|
"do_sample": do_sample,
|
|
"policy": model_config["policy"](),
|
|
"use_cuda_kernel": use_cuda_kernel,
|
|
}
|
|
|
|
kwargs2 = {
|
|
"model": model,
|
|
"use_engine": False,
|
|
"prompt_template": prompt_template,
|
|
"do_sample": do_sample,
|
|
"policy": None,
|
|
"use_cuda_kernel": use_cuda_kernel,
|
|
}
|
|
|
|
colossal_tp_1_output = run_engine(1, **kwargs1)
|
|
colossal_tp_2_output = run_engine(2, **kwargs1)
|
|
transformer_tp_1_output = run_engine(1, **kwargs2)
|
|
|
|
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output):
|
|
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}"
|
|
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}"
|
|
|
|
|
|
def run_engine(world_size, **kwargs):
|
|
manager = Manager()
|
|
result_list = manager.list([-1] * world_size) # Create a shared list
|
|
spawn(run_dist, world_size, func_to_run=_run_engine, ret=result_list, **kwargs)
|
|
return result_list[0]
|
|
|
|
|
|
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs):
|
|
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
|
|
|
|
if ret:
|
|
ret[rank] = func_to_run(**kwargs)
|
|
else:
|
|
func_to_run(**kwargs)
|
|
|
|
|
|
def _run_engine(model, use_engine=False, do_sample=False, use_cuda_kernel=False, prompt_template=None, policy=None):
|
|
setup_seed(20)
|
|
model_config = MODEL_MAP[model]
|
|
model_name_or_path = model_config["model_name_or_path"]
|
|
tokenizer = model_config["tokenizer"].from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True)
|
|
model = model_config["model"].from_pretrained(model_name_or_path, trust_remote_code=True).half().cuda()
|
|
model = model.eval()
|
|
|
|
inputs = [
|
|
"Introduce some landmarks in Paris:",
|
|
]
|
|
|
|
output_len = 38
|
|
|
|
if do_sample:
|
|
top_p = 0.5
|
|
top_k = 50
|
|
else:
|
|
top_p = None
|
|
top_k = None
|
|
|
|
if use_engine:
|
|
inference_config = InferenceConfig(
|
|
max_output_len=output_len,
|
|
prompt_template=prompt_template,
|
|
use_cuda_kernel=use_cuda_kernel,
|
|
tp_size=dist.get_world_size(),
|
|
)
|
|
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy)
|
|
assert inference_engine.generation_config.max_new_tokens == output_len
|
|
inference_engine.add_request(prompts=inputs)
|
|
assert inference_engine.request_handler._has_waiting()
|
|
generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k, max_new_tokens=output_len)
|
|
outputs = inference_engine.generate(generation_config=generation_config)
|
|
else:
|
|
if prompt_template:
|
|
# apply prompt template
|
|
inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs]
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"]
|
|
inputs = inputs.cuda()
|
|
generation_config = GenerationConfig(
|
|
do_sample=do_sample,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
pad_token_id=tokenizer.pad_token_id,
|
|
max_new_tokens=output_len,
|
|
)
|
|
outputs = model.generate(inputs, generation_config=generation_config)
|
|
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
|
return outputs
|
|
|
|
|
|
def setup_seed(seed):
|
|
torch.manual_seed(seed)
|
|
torch.random.manual_seed(seed)
|
|
torch.cuda.manual_seed_all(seed)
|
|
np.random.seed(seed)
|
|
random.seed(seed)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_model()
|