mirror of https://github.com/hpcaitech/ColossalAI
146 lines
6.3 KiB
Python
146 lines
6.3 KiB
Python
import pytest
|
|
import torch
|
|
from transformers.cache_utils import DynamicCache
|
|
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
from transformers.models.llama.configuration_llama import LlamaConfig
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, apply_rotary_pos_emb
|
|
|
|
from colossalai.inference.modeling.layers.attention import PagedAttention, convert_kvcache, copy_to_cache
|
|
|
|
|
|
@pytest.mark.skip(reason="This test is not used in the current version.")
|
|
def test_copy_to_cache():
|
|
key = torch.ones((2, 11, 3, 3))
|
|
key[0, 9, :, :] = 0
|
|
key[1, -2:, :, :] = 0
|
|
cache = torch.zeros(8, 3, 8, 3)
|
|
block_tables = torch.tensor([[0, 1], [2, 3]])
|
|
lengths = torch.tensor([9, 8])
|
|
cache = copy_to_cache(key, cache=cache, lengths=lengths, block_tables=block_tables, type="prefill")
|
|
assert cache[1, 0, 0, 0] == 1
|
|
assert cache[3, 0, 0, 0] == 0
|
|
|
|
decoding_key = torch.ones((2, 1, 3, 3))
|
|
cache = copy_to_cache(decoding_key, cache=cache, lengths=lengths + 1, block_tables=block_tables, type="decoding")
|
|
assert cache[1, 0, 0, 1] == 1
|
|
assert cache[3, 0, 0, 0] == 1
|
|
|
|
|
|
@pytest.mark.skip(reason="This test is not used in the current version.")
|
|
def test_convert_kvcache():
|
|
cache = torch.ones(8, 3, 8, 3)
|
|
key = torch.ones(2, 1, 3, 3) + 1
|
|
lengths = torch.tensor([10, 9])
|
|
block_tables = torch.tensor([[0, 1], [2, 3]])
|
|
copy_to_cache(key, cache=cache, lengths=lengths, block_tables=block_tables, type="decoding")
|
|
converted_cache = convert_kvcache(cache=cache, lengths=lengths, block_tables=block_tables)
|
|
assert converted_cache.shape == (2, 10, 3, 3)
|
|
|
|
|
|
@pytest.mark.skip(reason="This test is not used in the current version.")
|
|
def test_context_attention():
|
|
"""
|
|
test config: head_num = 4, head_size = 4
|
|
"""
|
|
attn = PagedAttention()
|
|
q = k = v = torch.randn(8, 4, 4)
|
|
k_cache = torch.empty(8, 4, 8, 4)
|
|
v_cache = torch.empty(8, 4, 8, 4)
|
|
context_lengths = torch.tensor(
|
|
[
|
|
8,
|
|
]
|
|
)
|
|
block_tables = torch.tensor([[0, 1]])
|
|
attn.nopad_context_forward(q, k, v, k_cache, v_cache, context_lengths, block_tables)
|
|
# test padded q/k/v
|
|
pad_q = pad_k = pad_v = q.unsqueeze(0)
|
|
attn.pad_context_forward(pad_q, pad_k, pad_v, k_cache, v_cache, context_lengths, block_tables)
|
|
|
|
config = LlamaConfig(num_attention_heads=4, num_key_value_heads=None, hidden_size=16)
|
|
transformer_attn = LlamaAttention(config)
|
|
transformer_attn.training = False
|
|
|
|
# test accuracy with LlamaAttention
|
|
hidden_states = torch.randn(1, 8, 16)
|
|
proj_q = transformer_attn.q_proj(hidden_states).view(1, 8, 4, 4).transpose(1, 2)
|
|
proj_k = transformer_attn.k_proj(hidden_states).view(1, 8, 4, 4).transpose(1, 2)
|
|
proj_v = transformer_attn.v_proj(hidden_states).view(1, 8, 4, 4).transpose(1, 2)
|
|
|
|
position_ids = torch.arange(0, 8, dtype=torch.long, device=proj_q.device)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
cos, sin = transformer_attn.rotary_emb(proj_v, 8)
|
|
proj_q, proj_k = apply_rotary_pos_emb(proj_q, proj_k, cos, sin, position_ids)
|
|
|
|
pad_attn_output = attn.pad_context_forward(
|
|
proj_q.transpose(1, 2),
|
|
proj_k.transpose(1, 2),
|
|
proj_v.transpose(1, 2),
|
|
k_cache,
|
|
v_cache,
|
|
context_lengths,
|
|
block_tables,
|
|
)
|
|
pad_attn_output = transformer_attn.o_proj(pad_attn_output)
|
|
attn_mask = AttentionMaskConverter._make_causal_mask(
|
|
hidden_states.shape[:2], q.dtype, q.device, past_key_values_length=0
|
|
)
|
|
attn_mask += PagedAttention.generate_padding_mask(context_lengths, 8)
|
|
attn_output, _, _ = transformer_attn.forward(hidden_states, attention_mask=attn_mask)
|
|
assert torch.allclose(pad_attn_output, attn_output, atol=1e-3, rtol=1e-3)
|
|
|
|
|
|
@pytest.mark.skip(reason="This test is not used in the current version.")
|
|
def test_decoding_attention():
|
|
# test the pipeline of decoding attention
|
|
attn = PagedAttention()
|
|
q = k = v = torch.randn(2, 1, 4, 8)
|
|
k_cache = torch.empty(8, 4, 8, 8)
|
|
v_cache = torch.empty(8, 4, 8, 8)
|
|
past_kv = torch.randn(2, 8, 4, 8)
|
|
context_lenghths = torch.tensor([8, 8])
|
|
lengths = context_lenghths + 1
|
|
block_tables = torch.tensor([[0, 1], [2, 3]])
|
|
copy_to_cache(past_kv, k_cache, lengths=context_lenghths, block_tables=block_tables)
|
|
copy_to_cache(past_kv, v_cache, lengths=context_lenghths, block_tables=block_tables)
|
|
attn.pad_decoding_forward(q, k, v, k_cache, v_cache, lengths=lengths, block_tables=block_tables)
|
|
|
|
# test decoding accuracy, past_kv is reused
|
|
config = LlamaConfig(num_attention_heads=4, num_key_value_heads=None, hidden_size=32)
|
|
transformer_attn = LlamaAttention(config)
|
|
transformer_attn.layer_idx = 0
|
|
transformer_attn.training = False
|
|
hidden_states = torch.randn(2, 1, 32)
|
|
proj_q = transformer_attn.q_proj(hidden_states).view(2, 1, 4, 8).transpose(1, 2)
|
|
proj_k = transformer_attn.k_proj(hidden_states).view(2, 1, 4, 8).transpose(1, 2)
|
|
proj_v = transformer_attn.v_proj(hidden_states).view(2, 1, 4, 8).transpose(1, 2)
|
|
|
|
cos, sin = transformer_attn.rotary_emb(proj_v, 16)
|
|
position_ids = lengths - 1
|
|
position_ids = position_ids.unsqueeze(1) # NOTE: this may be wrong
|
|
proj_q, proj_k = apply_rotary_pos_emb(proj_q, proj_k, cos, sin, position_ids, unsqueeze_dim=2)
|
|
|
|
llama_past_kv = DynamicCache()
|
|
llama_past_kv.update(key_states=past_kv.transpose(1, 2), value_states=past_kv.transpose(1, 2), layer_idx=0)
|
|
|
|
# past_key_value shape in Llama: bsz, num_heads, seq_len, head_dim
|
|
pad_attn_output = attn.pad_decoding_forward(
|
|
proj_q.transpose(1, 2), proj_k.transpose(1, 2), proj_v.transpose(1, 2), k_cache, v_cache, lengths, block_tables
|
|
)
|
|
attn_mask = AttentionMaskConverter._make_causal_mask(q.shape[:2], q.dtype, q.device, past_key_values_length=8)
|
|
attn_mask = attn_mask + PagedAttention.generate_padding_mask(lengths, 9).unsqueeze(1).unsqueeze(2)
|
|
|
|
pad_attn_output = transformer_attn.o_proj(pad_attn_output)
|
|
position_ids = context_lenghths.unsqueeze(1)
|
|
attn_output, _, _ = transformer_attn.forward(
|
|
hidden_states, past_key_value=llama_past_kv, position_ids=position_ids, attention_mask=attn_mask
|
|
)
|
|
assert torch.allclose(pad_attn_output, attn_output, atol=1e-3, rtol=1e-2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_copy_to_cache()
|
|
test_convert_kvcache()
|
|
test_context_attention()
|
|
test_decoding_attention()
|