mirror of https://github.com/hpcaitech/ColossalAI
54 lines
2.0 KiB
Python
54 lines
2.0 KiB
Python
from dataclasses import dataclass
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
from typing import Dict, List
|
|
from torch.fx.node import Node
|
|
|
|
__all__ = ['ShardingStrategy', 'StrategiesVector']
|
|
|
|
|
|
@dataclass
|
|
class ShardingStrategy:
|
|
'''
|
|
ShardingStrategy is a structure containing sharding strategies of inputs and output of this node
|
|
and costs information using in solver.
|
|
|
|
Argument:
|
|
name(str): express the sharding strategies in string, such as 'S0S1 = S0R x RS1'.
|
|
output_sharding_spec(ShardingSpec): ShardingSpec of the output node.
|
|
compute_cost(float): Computation cost to complete this strategy.(default to 0)
|
|
communication_cost(float): Communication cost to complete this strategy.(default to 0)
|
|
memory_cost(float): Memory cost of the output node using this strategy.(default to 0)
|
|
resharding_costs(Dict[int, List[float]]): resharding_cost[i][j] means the cost of i-th argument in the output node argument list
|
|
with j-th strategy in its strategies_vector transforms to sharding spec wanted in this
|
|
strategy.(default to None)
|
|
input_shardings(List(ShardingSpec)): The ShardingSpecs of the input nodes.
|
|
'''
|
|
|
|
name: str
|
|
output_sharding_spec: ShardingSpec
|
|
compute_cost: float = 0.
|
|
communication_cost: float = 0.
|
|
memory_cost: float = 0.
|
|
resharding_costs: Dict[int, List[float]] = None
|
|
input_shardings: ShardingSpec = None
|
|
|
|
|
|
class StrategiesVector(list):
|
|
'''
|
|
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
|
|
strategies of the node.
|
|
|
|
Argument:
|
|
node (Node): node for which the list of sharding strategies are generated.
|
|
'''
|
|
|
|
def __init__(self, node: Node):
|
|
super().__init__()
|
|
self.node = node
|
|
# fetch its input and output nodes
|
|
self.predecessor_nodes = list(node._input_nodes.keys())
|
|
self.successor_ndoes = list(node.users.keys())
|
|
|
|
def check_merge(self):
|
|
pass
|