ColossalAI/colossalai/auto_parallel/solver/sharding_strategy.py

54 lines
2.0 KiB
Python

from dataclasses import dataclass
from colossalai.tensor.sharding_spec import ShardingSpec
from typing import Dict, List
from torch.fx.node import Node
__all__ = ['ShardingStrategy', 'StrategiesVector']
@dataclass
class ShardingStrategy:
'''
ShardingStrategy is a structure containing sharding strategies of inputs and output of this node
and costs information using in solver.
Argument:
name(str): express the sharding strategies in string, such as 'S0S1 = S0R x RS1'.
output_sharding_spec(ShardingSpec): ShardingSpec of the output node.
compute_cost(float): Computation cost to complete this strategy.(default to 0)
communication_cost(float): Communication cost to complete this strategy.(default to 0)
memory_cost(float): Memory cost of the output node using this strategy.(default to 0)
resharding_costs(Dict[int, List[float]]): resharding_cost[i][j] means the cost of i-th argument in the output node argument list
with j-th strategy in its strategies_vector transforms to sharding spec wanted in this
strategy.(default to None)
input_shardings(List(ShardingSpec)): The ShardingSpecs of the input nodes.
'''
name: str
output_sharding_spec: ShardingSpec
compute_cost: float = 0.
communication_cost: float = 0.
memory_cost: float = 0.
resharding_costs: Dict[int, List[float]] = None
input_shardings: ShardingSpec = None
class StrategiesVector(list):
'''
Each node in fx graph will have a corresponding StrategiesVector, to store all the possible
strategies of the node.
Argument:
node (Node): node for which the list of sharding strategies are generated.
'''
def __init__(self, node: Node):
super().__init__()
self.node = node
# fetch its input and output nodes
self.predecessor_nodes = list(node._input_nodes.keys())
self.successor_ndoes = list(node.users.keys())
def check_merge(self):
pass