Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

217 lines
7.9 KiB

import os, shutil
import torch
import pytest
from copy import deepcopy
from functools import partial
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.optim.lr_scheduler import MultiplicativeLR
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
import colossalai
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils.cuda import get_current_device
from colossalai.utils import free_port
from colossalai.utils.model.colo_init_context import ColoInitContext
from colossalai.tensor import ComputePattern, ComputeSpec, ColoTensor, ShardSpec, ProcessGroup
from colossalai.utils.checkpoint import save_checkpoint, load_checkpoint
from colossalai.nn.optimizer import ColossalaiOptimizer
from tests.components_to_test.registry import non_distributed_component_funcs
def init_1d_row_linear(weight: ColoTensor, pg: ProcessGroup):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_col_linear(weight, pg):
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_row_embedding(weight, pg):
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_col_embedding(weight, pg):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
weight.set_process_group(pg)
weight.set_tensor_spec(*spec)
def init_1d_row_for_linear_weight_spec(model, pg: ProcessGroup):
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
for name, p in model.named_parameters():
if not isinstance(p, ColoTensor):
continue
if 'embed' in name and 'weight' in name:
init_1d_col_embedding(p, pg)
if 'proj1' in name and ('weight' in name or 'bias' in name):
init_1d_col_linear(p, pg)
if 'proj2' in name and 'weight' in name:
init_1d_row_linear(p, pg)
if 'classifier' in name and ('weight' in name or 'bias' in name):
init_1d_col_linear(p, pg)
def check_param_equal(model, torch_model):
for (n, p), (tn, tp) in zip(model.named_parameters(), torch_model.named_parameters()):
assert torch.all(p.data == tp.data), "{} went wrong.\n {} vs {}\n{}".format(n, p, tp, p.shape)
def remove(path):
""" param <path> could either be relative or absolute. """
if os.path.isfile(path) or os.path.islink(path):
os.remove(path)
elif os.path.isdir(path):
shutil.rmtree(path)
else:
raise ValueError("file {} is not a file or dir.".format(path))
def compare_optims(optim1, optim2):
state1 = optim1.state_dict()['state']
state2 = optim2.state_dict()['state']
for k, p1 in state1.items():
if k not in state2:
continue
p2 = state2[k]
for n, t1 in p1.items():
if n not in p2:
continue
t2 = p2[n]
if isinstance(t1, ColoTensor):
assert isinstance(t2, ColoTensor)
assert torch.allclose(t1, t2, rtol=0, atol=0)
def _run_checkpoint(model_name, init_spec_func, use_ddp, use_mp_reload, test_scheduler, pg):
get_components_func = non_distributed_component_funcs.get_callable(model_name)
model_builder, train_dataloader, test_dataloader, optimizer_class, criterion = get_components_func()
rank = torch.distributed.get_rank()
world_size = torch.distributed.get_world_size()
# set_seed(1)
with ColoInitContext(device=get_current_device()):
model = model_builder(checkpoint=True)
if use_mp_reload:
if 'bert' == model_name:
for name, p in model.named_parameters():
if not isinstance(p, ColoTensor):
continue
# num_class = type_vocab_size = 2 | (8, 2)
if 'classifier' in name and 'weight' in name:
init_1d_row_linear(p, pg)
# num_class = vocab_size = 30524 | (30524, 8)
elif 'word_embeddings' in name and 'weight' in name:
init_1d_row_embedding(p, pg)
# num_class = seq_len = 512 | (512, 8)
elif 'position_embeddings' in name and 'weight' in name:
init_1d_row_embedding(p, pg)
# num_class = type_vocab_size = 2 | (2, 8)
elif 'token_type_embeddings' in name and 'weight' in name:
init_1d_col_embedding(p, pg)
elif p.process_group.tp_world_size() == 1:
p.set_process_group(pg)
elif "simple_net" == model_name:
init_spec_func(model, pg)
model_reload = deepcopy(model)
model = model.cuda()
model.eval()
model_reload = model_reload.cuda()
model_reload.eval()
opt_class = torch.optim.Adam
colo_optimizer = ColossalaiOptimizer(opt_class(model.parameters(), lr=0.1))
colo_optimizer_reload = ColossalaiOptimizer(opt_class(model_reload.parameters(), lr=0.1))
for i, (data, label) in enumerate(train_dataloader):
# Zero grad
colo_optimizer.zero_grad()
colo_optimizer_reload.zero_grad()
data = data.to(get_current_device())
label = label.to(get_current_device())
dist.broadcast(data, pg.tp_rank_list()[0], pg.tp_process_group())
dist.broadcast(label, pg.tp_rank_list()[0], pg.tp_process_group())
# Bcast rank0 data to all processes
if criterion:
output = model(data)
output_reload = model_reload(data)
loss = criterion(output, label)
loss_reload = criterion(output_reload, label)
else:
loss = model(data, label)
loss_reload = model_reload(data, label)
loss.backward()
loss_reload.backward()
colo_optimizer.step()
colo_optimizer_reload.step()
if i > 2:
break
if not os.path.isdir('./checkpoint') and rank == 0:
os.mkdir('./checkpoint')
dist.barrier()
save_checkpoint('./checkpoint', 0, model, colo_optimizer, None)
load_checkpoint('./checkpoint', 0, model_reload, colo_optimizer_reload, None)
check_param_equal(model, model_reload)
compare_optims(colo_optimizer, colo_optimizer_reload)
if rank == 0:
remove('./checkpoint')
dist.barrier()
def run_dist(rank, world_size, port, use_ddp, use_mp_reload, test_scheduler):
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(tp_degree=world_size)
# the data loader of BERT is in DDP mode, causing the input data is not replicated in the TP context
for model_name in ['bert']:
_run_checkpoint(model_name,
init_1d_row_for_linear_weight_spec,
use_ddp,
use_mp_reload,
test_scheduler=test_scheduler,
pg=pg)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 2])
@pytest.mark.parametrize('use_ddp', [False])
@pytest.mark.parametrize('use_mp_reload', [True, False])
# @pytest.mark.parametrize('test_scheduler', ['colossalai_cosine_warmup', 'torch_cosine', 'torch_lambda'])
@rerun_if_address_is_in_use()
def test_checkpoint(world_size, use_ddp, use_mp_reload, test_scheduler=None):
run_func = partial(run_dist,
world_size=world_size,
port=free_port(),
use_ddp=use_ddp,
use_mp_reload=use_mp_reload,
test_scheduler=test_scheduler)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_checkpoint(2, use_ddp=False, use_mp_reload=True, test_scheduler="torch_cosine")