mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
67 lines
2.0 KiB
67 lines
2.0 KiB
#!/usr/bin/env python |
|
# -*- encoding: utf-8 -*- |
|
|
|
import os |
|
from functools import partial |
|
from pathlib import Path |
|
|
|
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
import torch.multiprocessing as mp |
|
|
|
import colossalai |
|
from torchvision import transforms, datasets |
|
from colossalai.context import ParallelMode, Config |
|
from colossalai.core import global_context as gpc |
|
from colossalai.utils import get_dataloader, free_port |
|
from colossalai.testing import rerun_if_address_is_in_use |
|
|
|
CONFIG = Config(dict( |
|
parallel=dict( |
|
pipeline=dict(size=1), |
|
tensor=dict(size=1, mode=None), |
|
), |
|
seed=1024, |
|
)) |
|
|
|
|
|
def run_data_sampler(rank, world_size, port): |
|
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend='gloo', port=port, host='localhost') |
|
colossalai.launch(**dist_args) |
|
print('finished initialization') |
|
|
|
# build dataset |
|
transform_pipeline = [transforms.ToTensor()] |
|
transform_pipeline = transforms.Compose(transform_pipeline) |
|
dataset = datasets.CIFAR10(root=Path(os.environ['DATA']), train=True, download=True, transform=transform_pipeline) |
|
|
|
# build dataloader |
|
dataloader = get_dataloader(dataset, batch_size=8, add_sampler=True) |
|
|
|
data_iter = iter(dataloader) |
|
img, label = data_iter.next() |
|
img = img[0] |
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0: |
|
img_to_compare = img.clone() |
|
else: |
|
img_to_compare = img |
|
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) |
|
|
|
if gpc.get_local_rank(ParallelMode.DATA) != 0: |
|
assert not torch.equal( |
|
img, img_to_compare), 'Same image was distributed across ranks but expected it to be different' |
|
torch.cuda.empty_cache() |
|
|
|
|
|
@pytest.mark.cpu |
|
@rerun_if_address_is_in_use() |
|
def test_data_sampler(): |
|
world_size = 4 |
|
test_func = partial(run_data_sampler, world_size=world_size, port=free_port()) |
|
mp.spawn(test_func, nprocs=world_size) |
|
|
|
|
|
if __name__ == '__main__': |
|
test_data_sampler()
|
|
|