mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
1.4 KiB
55 lines
1.4 KiB
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from colossalai.nn import CheckpointModule |
|
|
|
from .registry import non_distributed_component_funcs |
|
from .utils import DummyDataGenerator |
|
|
|
|
|
class SubNet(nn.Module): |
|
|
|
def __init__(self, out_features) -> None: |
|
super().__init__() |
|
self.bias = nn.Parameter(torch.zeros(out_features)) |
|
|
|
def forward(self, x, weight): |
|
return F.linear(x, weight, self.bias) |
|
|
|
|
|
class NestedNet(CheckpointModule): |
|
|
|
def __init__(self, checkpoint=False) -> None: |
|
super().__init__(checkpoint) |
|
self.fc1 = nn.Linear(5, 5) |
|
self.sub_fc = SubNet(5) |
|
self.fc2 = nn.Linear(5, 2) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.sub_fc(x, self.fc1.weight) |
|
x = self.fc1(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
class DummyDataLoader(DummyDataGenerator): |
|
|
|
def generate(self): |
|
data = torch.rand(16, 5) |
|
label = torch.randint(low=0, high=2, size=(16,)) |
|
return data, label |
|
|
|
|
|
@non_distributed_component_funcs.register(name='nested_model') |
|
def get_training_components(): |
|
|
|
def model_builder(checkpoint=False): |
|
return NestedNet(checkpoint) |
|
|
|
trainloader = DummyDataLoader() |
|
testloader = DummyDataLoader() |
|
|
|
criterion = torch.nn.CrossEntropyLoss() |
|
return model_builder, trainloader, testloader, torch.optim.Adam, criterion
|
|
|