Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

174 lines
7.3 KiB

import os
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from timm.models.vision_transformer import _create_vision_transformer
from titans.dataloader.imagenet import build_dali_imagenet
from tqdm import tqdm
from vit import DummyDataLoader
import colossalai
from colossalai.core import global_context as gpc
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn import CrossEntropyLoss
from colossalai.nn._ops import *
from colossalai.nn.lr_scheduler import CosineAnnealingWarmupLR
from colossalai.nn.optimizer import HybridAdam
from colossalai.nn.parallel.data_parallel import ColoDDP
from colossalai.tensor import ComputePattern, ComputeSpec, DistSpecManager, ProcessGroup, ShardSpec
from colossalai.utils import get_current_device
from colossalai.utils.model.colo_init_context import ColoInitContext
def init_1d_row_for_linear_weight_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([-1], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if 'weight' in n and 'norm' not in n and 'patch_embed.proj.weight' not in n:
p.set_process_group(pg)
p.set_tensor_spec(*spec)
# Similarly, it's col split for Linear but row split for others.
def init_1d_col_for_linear_weight_bias_spec(model, world_size: int):
pg = ProcessGroup(tp_degree=world_size)
spec = (ShardSpec([0], [pg.tp_world_size()]), ComputeSpec(ComputePattern.TP1D))
with DistSpecManager.no_grad():
for n, p in model.named_parameters():
if ('weight' in n or 'bias' in n) and 'norm' not in n and ('patch_embed.proj.weight' not in n
and 'patch_embed.proj.bias' not in n):
p.set_process_group(pg)
p.set_tensor_spec(*spec)
def init_spec_func(model, tp_type):
world_size = torch.distributed.get_world_size()
if tp_type == 'row':
init_1d_row_for_linear_weight_spec(model, world_size)
elif tp_type == 'col':
init_1d_col_for_linear_weight_bias_spec(model, world_size)
else:
raise NotImplemented
def train_imagenet():
parser = colossalai.get_default_parser()
parser.add_argument('--resume_from', default=False, action='store_true')
parser.add_argument('--dummy_data', default=False, action='store_true')
args = parser.parse_args()
colossalai.launch_from_torch(config=args.config)
use_ddp = gpc.config.USE_DDP
disable_existing_loggers()
logger = get_dist_logger()
if hasattr(gpc.config, 'LOG_PATH'):
if gpc.get_global_rank() == 0:
log_path = gpc.config.LOG_PATH
if not os.path.exists(log_path):
os.mkdir(log_path)
logger.log_to_file(log_path)
logger.info('Build data loader', ranks=[0])
if not args.dummy_data:
root = os.environ['DATA']
train_dataloader, test_dataloader = build_dali_imagenet(root,
train_batch_size=gpc.config.BATCH_SIZE,
test_batch_size=gpc.config.BATCH_SIZE)
else:
train_dataloader = DummyDataLoader(length=10,
batch_size=gpc.config.BATCH_SIZE,
category=gpc.config.NUM_CLASSES,
image_size=gpc.config.IMG_SIZE,
return_dict=False)
test_dataloader = DummyDataLoader(length=5,
batch_size=gpc.config.BATCH_SIZE,
category=gpc.config.NUM_CLASSES,
image_size=gpc.config.IMG_SIZE,
return_dict=False)
logger.info('Build model', ranks=[0])
model_kwargs = dict(img_size=gpc.config.IMG_SIZE,
patch_size=gpc.config.PATCH_SIZE,
embed_dim=gpc.config.HIDDEN_SIZE,
depth=gpc.config.DEPTH,
num_heads=gpc.config.NUM_HEADS,
mlp_ratio=gpc.config.MLP_RATIO,
num_classes=gpc.config.NUM_CLASSES,
drop_rate=0.1,
attn_drop_rate=0.1,
weight_init='jax')
with ColoInitContext(device=get_current_device()):
model = _create_vision_transformer('vit_small_patch16_224', pretrained=False, **model_kwargs)
init_spec_func(model, gpc.config.TP_TYPE)
world_size = torch.distributed.get_world_size()
model = ColoDDP(module=model, process_group=ProcessGroup(tp_degree=world_size))
logger.info('Build criterion, optimizer, lr_scheduler', ranks=[0])
optimizer = HybridAdam(model.parameters(), lr=gpc.config.LEARNING_RATE, weight_decay=gpc.config.WEIGHT_DECAY)
criterion = CrossEntropyLoss()
lr_scheduler = CosineAnnealingWarmupLR(optimizer=optimizer,
total_steps=gpc.config.NUM_EPOCHS,
warmup_steps=gpc.config.WARMUP_EPOCHS)
start_epoch = 0
if args.resume_from:
load_model = torch.load(args.resume_from + '_model.pth')
start_epoch = load_model['epoch']
model.load_state_dict(load_model['model'])
load_optim = torch.load(args.resume_from + '_optim_rank_{}.pth'.format(dist.get_rank()))
optimizer.load_state_dict(load_optim['optim'])
for epoch in range(start_epoch, gpc.config.NUM_EPOCHS):
model.train()
for index, (x, y) in tqdm(enumerate(train_dataloader), total=len(train_dataloader), leave=False):
x, y = x.cuda(), y.cuda()
output = model(x)
loss = criterion(output, y)
loss = loss / gpc.config.gradient_accumulation
if use_ddp:
model.backward(loss)
else:
loss.backward()
if (index + 1) % gpc.config.gradient_accumulation == 0:
optimizer.step()
if use_ddp:
model.zero_grad()
else:
optimizer.zero_grad()
logger.info(
f"Finish Train Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {loss.item():.3f} lr: {optimizer.state_dict()['param_groups'][0]['lr']}",
ranks=[0])
model.eval()
test_loss = 0
correct = 0
test_sum = 0
with torch.no_grad():
for index, (x, y) in tqdm(enumerate(test_dataloader), total=len(test_dataloader), leave=False):
x, y = x.cuda(), y.cuda()
output = model(x)
test_loss += F.cross_entropy(output, y, reduction='sum').item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(y.view_as(pred)).sum().item()
test_sum += y.size(0)
test_loss /= test_sum
logger.info(
f"Finish Test Epoch [{epoch+1}/{gpc.config.NUM_EPOCHS}] loss: {test_loss:.3f} Accuracy: [{correct}/{test_sum}]({correct/test_sum:.3f})",
ranks=[0])
lr_scheduler.step()
if __name__ == '__main__':
train_imagenet()