mirror of https://github.com/hpcaitech/ColossalAI
199 lines
8.6 KiB
Python
199 lines
8.6 KiB
Python
from .estimate_memory import EstimateMemory
|
|
from .reorder_graph import ReorderGraph
|
|
from .trace_indice import TraceIndice
|
|
from .utils import NodeMgr, is_non_compute_node
|
|
|
|
|
|
class SelectChunk(object):
|
|
|
|
def __init__(
|
|
self,
|
|
trace_indice: TraceIndice,
|
|
estimate_memory: EstimateMemory,
|
|
reorder_graph: ReorderGraph,
|
|
node_mgr: NodeMgr,
|
|
max_memory=None,
|
|
):
|
|
self.trace_indice = trace_indice
|
|
self.estimate_memory = estimate_memory
|
|
self.reorder_graph = reorder_graph
|
|
self.node_mgr = node_mgr
|
|
if max_memory is not None:
|
|
self.stratge = "fit_memory"
|
|
self.max_memory = max_memory # MB
|
|
else:
|
|
self.stratge = "min_memory"
|
|
|
|
def _select_best_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak):
|
|
if self.stratge == "min_memory":
|
|
best_region = self._select_min_memory_chunk_region(
|
|
possible_chunk_regions,
|
|
chunk_infos,
|
|
peak_node,
|
|
max_chunk_region,
|
|
mem_peak,
|
|
)
|
|
elif self.stratge == "fit_memory":
|
|
best_region = self._select_fit_memory_chunk_region(
|
|
possible_chunk_regions,
|
|
chunk_infos,
|
|
peak_node,
|
|
max_chunk_region,
|
|
mem_peak,
|
|
)
|
|
else:
|
|
raise RuntimeError()
|
|
return best_region
|
|
|
|
def _select_fit_memory_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region,
|
|
mem_peak):
|
|
# stop chunk if max memory satisfy memory limit
|
|
if max(mem_peak) < self.max_memory:
|
|
return None
|
|
|
|
# remove illegal regions
|
|
illegal_regions = []
|
|
for i in possible_chunk_regions:
|
|
if not self._is_legal_region(i, chunk_infos):
|
|
illegal_regions.append(i)
|
|
for i in illegal_regions:
|
|
if i in possible_chunk_regions:
|
|
possible_chunk_regions.remove(i)
|
|
|
|
if len(possible_chunk_regions) == 0:
|
|
return None
|
|
|
|
max_possible_chunk_region = (min([i["region"][0] for i in possible_chunk_regions]),
|
|
max([i["region"][1] for i in possible_chunk_regions]))
|
|
|
|
# get mem for chunk region
|
|
regions_dict = []
|
|
for region in possible_chunk_regions:
|
|
cur_region = region.copy()
|
|
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(self.node_mgr.get_node_list(), cur_region)
|
|
cur_chunk_infos = chunk_infos + [cur_region]
|
|
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(cur_node_list, cur_chunk_infos)[0]
|
|
cur_chunk_region_peak = cur_mem_peak[max_possible_chunk_region[0]:max_possible_chunk_region[1] + 1]
|
|
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
|
if cur_chunk_region_max_peak < self.max_memory:
|
|
regions_dict.append({
|
|
"chunk_info": region,
|
|
"chunk_max_mem": cur_chunk_region_max_peak,
|
|
"chunk_len": self._get_compute_node_num(region["region"][0], region["region"][1]),
|
|
"reorder_chunk_info": cur_region,
|
|
"reorder_node_list": cur_node_list,
|
|
})
|
|
# no region found
|
|
if len(regions_dict) == 0:
|
|
raise RuntimeError("Search failed. Try a larger memory threshold.")
|
|
|
|
# select the min chunk len
|
|
chunk_len = [i["chunk_len"] for i in regions_dict]
|
|
best_region_idx = chunk_len.index(min(chunk_len))
|
|
best_region = regions_dict[best_region_idx]
|
|
|
|
# get max chunk size
|
|
best_region = self._get_fit_chunk_size(best_region, chunk_infos)
|
|
return best_region
|
|
|
|
def _get_fit_chunk_size(self, chunk_region_dict, chunk_infos):
|
|
chunk_size = 1
|
|
reorder_chunk_info = chunk_region_dict["reorder_chunk_info"]
|
|
reorder_chunk_info["chunk_size"] = chunk_size
|
|
cur_chunk_max_mem = 0
|
|
# search a region
|
|
while cur_chunk_max_mem < self.max_memory:
|
|
chunk_size *= 2
|
|
reorder_chunk_info["chunk_size"] = chunk_size
|
|
cur_chunk_infos = chunk_infos + [reorder_chunk_info]
|
|
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(chunk_region_dict["reorder_node_list"],
|
|
cur_chunk_infos)[0]
|
|
cur_chunk_max_mem = max(cur_mem_peak[reorder_chunk_info["region"][0]:reorder_chunk_info["region"][1] + 1])
|
|
# search exact size
|
|
chunk_info = chunk_region_dict["chunk_info"]
|
|
chunk_info["chunk_size"] = self._chunk_size_binary_search(chunk_size // 2, chunk_size, chunk_region_dict,
|
|
chunk_infos)
|
|
return chunk_info
|
|
|
|
def _chunk_size_binary_search(self, left, right, chunk_region_dict, chunk_infos):
|
|
if left >= 16:
|
|
gap = 4
|
|
else:
|
|
gap = 1
|
|
chunk_info = chunk_region_dict["reorder_chunk_info"]
|
|
while right >= left + gap:
|
|
mid = int((left + right) / 2 + 0.5)
|
|
chunk_info["chunk_size"] = mid
|
|
cur_chunk_infos = chunk_infos + [chunk_info]
|
|
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(chunk_region_dict["reorder_node_list"],
|
|
cur_chunk_infos)[0]
|
|
cur_chunk_max_mem = max(cur_mem_peak[chunk_info["region"][0]:chunk_info["region"][1] + 1])
|
|
if cur_chunk_max_mem >= self.max_memory:
|
|
right = mid - gap
|
|
else:
|
|
left = mid + gap
|
|
return left
|
|
|
|
def _get_compute_node_num(self, start, end):
|
|
count = 0
|
|
for i in self.node_mgr.get_node_slice_by_idx(start, end + 1):
|
|
if not is_non_compute_node(i):
|
|
count += 1
|
|
return count
|
|
|
|
def _select_min_memory_chunk_region(self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region,
|
|
mem_peak):
|
|
# remove illegal regions
|
|
illegal_regions = []
|
|
for i in possible_chunk_regions:
|
|
if not self._is_legal_region(i, chunk_infos):
|
|
illegal_regions.append(i)
|
|
for i in illegal_regions:
|
|
if i in possible_chunk_regions:
|
|
possible_chunk_regions.remove(i)
|
|
|
|
if len(possible_chunk_regions) == 0:
|
|
return None
|
|
|
|
# get max possible chunk region
|
|
max_possible_chunk_region = (min([i["region"][0] for i in possible_chunk_regions]),
|
|
max([i["region"][1] for i in possible_chunk_regions]))
|
|
|
|
# get mem for chunk region
|
|
regions_dict_list = []
|
|
for region in possible_chunk_regions:
|
|
cur_region = region.copy()
|
|
cur_node_list, cur_region = self.reorder_graph.tmp_reorder(self.node_mgr.get_node_list(), cur_region)
|
|
cur_chunk_infos = chunk_infos + [cur_region]
|
|
cur_mem_peak = self.estimate_memory.estimate_chunk_inference_mem(cur_node_list, cur_chunk_infos)[0]
|
|
cur_chunk_region_peak = cur_mem_peak[max_possible_chunk_region[0]:max_possible_chunk_region[1] + 1]
|
|
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
|
regions_dict_list.append({
|
|
"chunk_info": region,
|
|
"chunk_max_mem": cur_chunk_region_max_peak,
|
|
"chunk_len": self._get_compute_node_num(region["region"][0], region["region"][1]),
|
|
"reorder_chunk_info": cur_region,
|
|
"reorder_node_list": cur_node_list,
|
|
})
|
|
|
|
# select the min mem
|
|
chunk_max_mem = [i["chunk_max_mem"] for i in regions_dict_list]
|
|
best_region_idx = chunk_max_mem.index(min(chunk_max_mem))
|
|
best_region = regions_dict_list[best_region_idx]["chunk_info"]
|
|
if best_region is not None:
|
|
best_region["chunk_size"] = 1
|
|
return best_region
|
|
|
|
def _is_legal_region(self, cur_chunk_info, chunk_infos):
|
|
(chunk_region_start, chunk_region_end) = cur_chunk_info["region"]
|
|
if cur_chunk_info in chunk_infos:
|
|
return False
|
|
if chunk_region_end < chunk_region_start:
|
|
return False
|
|
for i in chunk_infos:
|
|
region = i["region"]
|
|
if not ((chunk_region_start > region[1] and chunk_region_end > region[1]) or
|
|
(chunk_region_start < region[0] and chunk_region_end < region[0])):
|
|
return False
|
|
return True
|