mirror of https://github.com/hpcaitech/ColossalAI
476 lines
23 KiB
Python
476 lines
23 KiB
Python
import operator
|
|
from copy import deepcopy
|
|
from typing import Dict, List, Union
|
|
|
|
import torch
|
|
from torch.fx import symbolic_trace
|
|
from torch.fx.node import Node
|
|
|
|
from colossalai.auto_parallel.tensor_shard.constants import RESHAPE_FUNC_OP
|
|
from colossalai.auto_parallel.tensor_shard.sharding_strategy import (
|
|
CommAction,
|
|
CommType,
|
|
OperationDataType,
|
|
ShardingStrategy,
|
|
)
|
|
from colossalai.auto_parallel.tensor_shard.solver.strategies_constructor import StrategiesConstructor
|
|
from colossalai.device.device_mesh import DeviceMesh
|
|
from colossalai.tensor.comm_spec import _all_reduce
|
|
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
|
|
from colossalai.tensor.sharding_spec import ShardingSpec
|
|
|
|
shape_consistency_manager = ShapeConsistencyManager()
|
|
|
|
|
|
def size_processing(size: Union[int, torch.Size],
|
|
dim_partition_dict: Dict[int, List[int]],
|
|
device_mesh_info: Dict[int, int],
|
|
target_dim: int = None,
|
|
node_name: str = None):
|
|
"""
|
|
This method will be invoked during runtime to convert size node value depending on distributed information.
|
|
"""
|
|
if target_dim is not None:
|
|
assert isinstance(size, int)
|
|
if target_dim in dim_partition_dict:
|
|
total_shard_size = 1
|
|
for shard_dim in dim_partition_dict[target_dim]:
|
|
total_shard_size *= device_mesh_info[shard_dim]
|
|
size = size * total_shard_size
|
|
|
|
else:
|
|
size = list(size)
|
|
for dim, dim_size in enumerate(size):
|
|
if dim in dim_partition_dict:
|
|
total_shard_size = 1
|
|
for shard_dim in dim_partition_dict[dim]:
|
|
total_shard_size *= device_mesh_info[shard_dim]
|
|
size[dim] = dim_size * total_shard_size
|
|
size = torch.Size(size)
|
|
|
|
return size
|
|
|
|
|
|
def _solution_annotatation(gm: torch.fx.GraphModule,
|
|
solution: List[int],
|
|
strategies_constructor: StrategiesConstructor = None):
|
|
"""
|
|
This method is used to stick the solution strategy to the nodes and add the information
|
|
required in runtime into graph as placeholder nodes.
|
|
"""
|
|
mod_graph = gm.graph
|
|
# TODO: In future PR, strategies_constructor should be a required argument,
|
|
# instead of optional argument. This is because we don't need to consider nodes with
|
|
# no strategy in runtime preparation pass.
|
|
if strategies_constructor is not None:
|
|
nodes = [strategies_vector.node for strategies_vector in strategies_constructor.leaf_strategies]
|
|
no_strategy_nodes = strategies_constructor.no_strategy_nodes
|
|
else:
|
|
nodes = tuple(mod_graph.nodes)
|
|
no_strategy_nodes = []
|
|
|
|
# the dict to get origin sharding spec of node
|
|
origin_node_sharding_spec_dict = {}
|
|
for node_index, (node, strategy_index) in enumerate(zip(nodes, solution)):
|
|
strategies_vector = node.strategies_vector
|
|
# stick the solution strategy to the corresponding node
|
|
setattr(node, 'best_strategy', strategies_vector[strategy_index])
|
|
setattr(node, 'sharding_spec', strategies_vector[strategy_index].get_sharding_spec_by_name(str(node)))
|
|
origin_node_sharding_spec_dict[node_index] = strategies_vector[strategy_index].get_sharding_spec_by_name(
|
|
str(node))
|
|
|
|
# attach the corresponding metainfo if node has the attribute `metainfo_vector`
|
|
if hasattr(node, 'metainfo_vector'):
|
|
setattr(node, 'best_metainfo', node.metainfo_vector[strategy_index])
|
|
|
|
# the dict to get input sharding specs of user node
|
|
sharding_spec_convert_dict = {}
|
|
# the dict to record comm actions of nodes
|
|
comm_actions_dict = {}
|
|
for index, node in enumerate(nodes):
|
|
target_sharding_specs = []
|
|
for user_node in node.strategies_vector.successor_nodes:
|
|
if user_node in no_strategy_nodes:
|
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(str(node.name))
|
|
else:
|
|
target_sharding_spec = user_node.best_strategy.get_sharding_spec_by_name(str(node.name))
|
|
target_sharding_specs.append(target_sharding_spec)
|
|
sharding_spec_convert_dict[index] = target_sharding_specs
|
|
setattr(node, 'target_sharding_specs', target_sharding_specs)
|
|
# the get_attr node strategy is kind of pending strategy, which means we will change it
|
|
# to the same strategy of the user node.
|
|
if node.op == 'get_attr':
|
|
assert len(target_sharding_specs) == 1, f'sharing weight is not supported in current version.'
|
|
target_node = node.strategies_vector.successor_nodes[0]
|
|
node_name = str(node)
|
|
if target_node.op == 'call_function' and target_node.target in RESHAPE_FUNC_OP:
|
|
node_name = str(target_node)
|
|
target_node = target_node.strategies_vector.successor_nodes[0]
|
|
user_strategy = target_node.best_strategy
|
|
op_data_in_user = user_strategy.get_op_data_by_name(node_name)
|
|
origin_pending_strategy = node.best_strategy
|
|
origin_op_data = origin_pending_strategy.get_op_data_by_name(str(node))
|
|
|
|
new_communication_actions = {}
|
|
if op_data_in_user in user_strategy.communication_actions:
|
|
new_communication_action = user_strategy.communication_actions.pop(op_data_in_user)
|
|
new_communication_action.arg_index = 0
|
|
new_communication_actions[origin_op_data] = new_communication_action
|
|
node.best_strategy.communication_actions = new_communication_actions
|
|
|
|
comm_action_dict = {}
|
|
for op_data, comm_action in node.best_strategy.communication_actions.items():
|
|
comm_action_dict[op_data.name] = comm_action
|
|
comm_actions_dict[index] = comm_action_dict
|
|
|
|
# add above dicts into graph
|
|
for node in nodes:
|
|
if node.op != 'placeholder':
|
|
with mod_graph.inserting_before(node):
|
|
input_specs_node = mod_graph.create_node('placeholder', target='sharding_spec_convert_dict')
|
|
origin_specs_node = mod_graph.create_node('placeholder', target='origin_node_sharding_spec_dict')
|
|
comm_actions_dict_node = mod_graph.create_node('placeholder', target='comm_actions_dict')
|
|
break
|
|
return gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict
|
|
|
|
|
|
def _size_value_converting(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
|
|
"""
|
|
In the auto parallel system, tensors may get shard on different devices, so the size of tensors
|
|
need to be converted to the size of original tensor and managed by the users, such as torch.view,
|
|
torch.reshape, etc. These nodes have enough information like input sharding_spec and
|
|
output sharding_spec to decide how to convert the size value.
|
|
"""
|
|
mod_graph = gm.graph
|
|
nodes = tuple(mod_graph.nodes)
|
|
node_pairs = {}
|
|
|
|
for node in nodes:
|
|
|
|
if node.op == 'call_method' and node.target == 'size':
|
|
# extract useful information from size node
|
|
# dim_partition_dict will instruct the size value on which
|
|
# dimension should be enlarged.
|
|
sharding_spec = node.args[0].sharding_spec
|
|
dim_partition_dict = sharding_spec.dim_partition_dict
|
|
|
|
# there are two usages of torch.Tensor.size:
|
|
# tensor.size()
|
|
# tensor.size(dim)
|
|
# if a target_dim is assigned, then the output will be
|
|
# in type of int, instead of torch.Size
|
|
target_dim = None
|
|
if len(node.args) > 1:
|
|
target_dim = node.args[1]
|
|
if target_dim < 0:
|
|
target_dim += node.args[0]._meta_data.dim()
|
|
|
|
# DeviceMesh information instructs the scaling of the size value
|
|
device_mesh_info = {}
|
|
for dim, dim_size in enumerate(device_mesh.mesh_shape):
|
|
device_mesh_info[dim] = dim_size
|
|
|
|
with mod_graph.inserting_after(node):
|
|
size_processing_node = mod_graph.create_node('call_function',
|
|
size_processing,
|
|
args=(node, dim_partition_dict, device_mesh_info,
|
|
target_dim, node.name))
|
|
# store original node and processing node pair in node_pairs dictioanry
|
|
# It will be used to replace the original node with processing node in slice object
|
|
node_pairs[node] = size_processing_node
|
|
size_processing_node._meta_data = node._meta_data
|
|
if 'activation_checkpoint' in node.meta:
|
|
size_processing_node.meta['activation_checkpoint'] = node.meta['activation_checkpoint']
|
|
|
|
user_list = list(node.users.keys())
|
|
for user in user_list:
|
|
if user == size_processing_node:
|
|
continue
|
|
new_args = list(user.args)
|
|
new_kwargs = dict(user.kwargs)
|
|
# the origin node may be a positional argument or key word argument of user node
|
|
if node in new_args:
|
|
# substitute the origin node with size_processing_node
|
|
new_args[new_args.index(node)] = size_processing_node
|
|
user.args = tuple(new_args)
|
|
elif str(node) in new_kwargs:
|
|
# substitute the origin node with size_processing_node
|
|
new_kwargs[str(node)] = size_processing_node
|
|
user.kwargs = new_kwargs
|
|
|
|
if node.op == 'call_function' and node.target == operator.getitem:
|
|
|
|
getitem_index = node.args[1]
|
|
# slice object is quite special in torch.fx graph,
|
|
# On one side, we treat slice object same as type of int,
|
|
# so we do not create a node for slice object. On the other side,
|
|
# slice object could take fx.Node as its argument. And the user
|
|
# relationship cannot be tracked in fx graph.
|
|
# Therefore, I record the node_pairs in this pass, and use the it
|
|
# to replace the original node argument inside the slice object if
|
|
# it has been processed in above pass.
|
|
|
|
# There are three main usages of operator.getitem:
|
|
# getitem(input, int)
|
|
# getitem(input, slice)
|
|
# getitem(input, Tuple[slice])
|
|
# In this pass, we need process the last two cases because
|
|
# node arguments may potentially appear in these cases.
|
|
if isinstance(getitem_index, slice):
|
|
new_start, new_stop, new_step = getitem_index.start, getitem_index.stop, getitem_index.step
|
|
if getitem_index.start in node_pairs:
|
|
new_start = node_pairs[getitem_index.start]
|
|
elif getitem_index.stop in node_pairs:
|
|
new_stop = node_pairs[getitem_index.stop]
|
|
elif getitem_index.step in node_pairs:
|
|
new_step = node_pairs[getitem_index.step]
|
|
new_slice_item = slice(new_start, new_stop, new_step)
|
|
new_args = (node.args[0], new_slice_item)
|
|
node.args = new_args
|
|
|
|
elif isinstance(getitem_index, (tuple, list)):
|
|
if not isinstance(getitem_index[0], slice):
|
|
continue
|
|
new_slice_items = []
|
|
|
|
for slice_item in getitem_index:
|
|
if slice_item is None:
|
|
new_slice_items.append(None)
|
|
continue
|
|
|
|
new_start, new_stop, new_step = slice_item.start, slice_item.stop, slice_item.step
|
|
|
|
if slice_item.start in node_pairs:
|
|
new_start = node_pairs[slice_item.start]
|
|
elif slice_item.stop in node_pairs:
|
|
new_stop = node_pairs[slice_item.stop]
|
|
elif slice_item.step in node_pairs:
|
|
new_step = node_pairs[slice_item.step]
|
|
new_slice_item = slice(new_start, new_stop, new_step)
|
|
new_slice_items.append(new_slice_item)
|
|
|
|
new_args = (node.args[0], tuple(new_slice_items))
|
|
node.args = new_args
|
|
|
|
return gm
|
|
|
|
|
|
def _node_args_converting(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
|
|
"""
|
|
This pass will process node args to adapt the distributed tensor layout.
|
|
"""
|
|
mod_graph = gm.graph
|
|
nodes = tuple(mod_graph.nodes)
|
|
|
|
for node in nodes:
|
|
# skip the placeholder node added in _solution_annotation pass
|
|
if not hasattr(node, 'sharding_spec'):
|
|
continue
|
|
|
|
def _process_sharding_spec(sharding_spec):
|
|
if isinstance(sharding_spec, ShardingSpec):
|
|
dim_partition_dict = sharding_spec.dim_partition_dict
|
|
device_mesh = sharding_spec.device_mesh
|
|
return dim_partition_dict, device_mesh
|
|
if sharding_spec is None:
|
|
return None, None
|
|
assert isinstance(sharding_spec,
|
|
(tuple, list)), 'sharding_spec should be type of ShardingSpec, tuple, list or None'
|
|
|
|
device_mesh = sharding_spec[0].device_mesh
|
|
dim_partition_dict = []
|
|
for element in sharding_spec:
|
|
dim_partition_dict.append(_process_sharding_spec(element))
|
|
return dim_partition_dict, sharding_spec
|
|
|
|
output_dim_partition_dict, device_mesh = _process_sharding_spec(node.sharding_spec)
|
|
new_args = []
|
|
|
|
if node.op == 'call_method':
|
|
method = getattr(node.args[0]._meta_data.__class__, node.target)
|
|
# process the node with (input, *shape) style args
|
|
if method in (torch.Tensor.view, torch.Tensor.reshape):
|
|
|
|
for arg in node.args:
|
|
if isinstance(arg, Node):
|
|
if isinstance(arg._meta_data, (int, tuple, list)):
|
|
new_args.append(arg._meta_data)
|
|
else:
|
|
new_args.append(arg)
|
|
else:
|
|
assert isinstance(
|
|
arg, (int, tuple, list)), 'The argument in view node should be either type of Node or int.'
|
|
new_args.append(arg)
|
|
|
|
for dim, shard_dims in output_dim_partition_dict.items():
|
|
total_shard_size = 1
|
|
for shard_dim in shard_dims:
|
|
total_shard_size *= device_mesh.shape[shard_dim]
|
|
# There are two ways to use torch.view:
|
|
# 1. torch.view(input, *shape)
|
|
# 2. torch.view(input, shape)
|
|
if isinstance(new_args[1], int):
|
|
# we will skip the dim with -1 value
|
|
if new_args[dim + 1] == -1:
|
|
continue
|
|
else:
|
|
new_args[dim + 1] //= total_shard_size
|
|
else:
|
|
new_args[1] = list(new_args[1])
|
|
# we will skip the dim with -1 value
|
|
if new_args[1][dim] == -1:
|
|
continue
|
|
else:
|
|
new_args[1][dim] //= total_shard_size
|
|
node.args = tuple(new_args)
|
|
|
|
elif node.op == 'call_function':
|
|
target = node.target
|
|
# process the node with (input, torch.Size) style args
|
|
if target in (torch.reshape,):
|
|
for arg in node.args:
|
|
if isinstance(arg, Node):
|
|
if isinstance(arg._meta_data, (tuple, list)):
|
|
new_args.append(list(arg._meta_data))
|
|
else:
|
|
new_args.append(arg)
|
|
else:
|
|
assert isinstance(
|
|
arg, (tuple, list)), 'The argument in reshape node should be either type of Node or tuple.'
|
|
new_args.append(list(arg))
|
|
|
|
for dim, shard_dims in output_dim_partition_dict.items():
|
|
# we will skip the dim with -1 value
|
|
if new_args[1][dim] == -1:
|
|
continue
|
|
total_shard_size = 1
|
|
for shard_dim in shard_dims:
|
|
total_shard_size *= device_mesh.shape[shard_dim]
|
|
new_args[1][dim] //= total_shard_size
|
|
node.args = tuple(new_args)
|
|
|
|
return gm
|
|
|
|
|
|
def _module_params_sharding(gm: torch.fx.GraphModule, device_mesh: DeviceMesh):
|
|
"""
|
|
Apply the sharding action to the module parameters and buffers following the
|
|
instructions of solver solution.
|
|
"""
|
|
mod_graph = gm.graph
|
|
nodes = tuple(mod_graph.nodes)
|
|
# This stream is created for overlaping the communication and computation.
|
|
reduction_stream = torch.cuda.Stream()
|
|
for node in nodes:
|
|
if node.op == 'call_module':
|
|
target_module = node.graph.owning_module.get_submodule(node.target)
|
|
# TODO: we need to do more actions to take care of the shared parameters.
|
|
if hasattr(target_module, 'processed') and target_module.processed:
|
|
continue
|
|
setattr(target_module, 'processed', True)
|
|
for name, param in target_module.named_parameters():
|
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
|
# apply the sharding spec of parameters
|
|
if target_sharding_spec.dim_partition_dict != {}:
|
|
origin_sharding_spec = ShardingSpec(device_mesh, param.shape, {})
|
|
setattr(param, 'sharding_spec', origin_sharding_spec)
|
|
# TODO: build a ColoParamter class to manager the distributed parameters
|
|
# we could use .data here, because all the operations just happen before the real training
|
|
# loop, so we don't need to track these operations in the autograd graph.
|
|
param.data = shape_consistency_manager.apply_for_autoparallel_runtime(
|
|
param.data, param.sharding_spec, target_sharding_spec).detach().clone()
|
|
|
|
setattr(target_module, name, param)
|
|
comm_actions = node.best_strategy.communication_actions
|
|
for operation_data, comm_action in comm_actions.items():
|
|
comm_spec_to_use = comm_action.comm_spec
|
|
# register hook to the parameters
|
|
if operation_data.type == OperationDataType.PARAM and operation_data.name == name and comm_action.comm_type == CommType.HOOK:
|
|
|
|
def wrapper(param, comm_spec, stream):
|
|
|
|
def hook_fn(grad):
|
|
with torch.cuda.stream(stream):
|
|
_all_reduce(grad, comm_spec, async_op=True)
|
|
|
|
param.register_hook(hook_fn)
|
|
|
|
wrapper(param, comm_spec_to_use, reduction_stream)
|
|
|
|
sharded_buffer_dict = {}
|
|
# apply the sharding spec of buffers
|
|
for name, buffer in target_module.named_buffers():
|
|
origin_sharding_spec = ShardingSpec(device_mesh, buffer.shape, {})
|
|
setattr(buffer, 'sharding_spec', origin_sharding_spec)
|
|
target_sharding_spec = node.best_strategy.get_sharding_spec_by_name(name)
|
|
buffer_sharded = shape_consistency_manager.apply(buffer, target_sharding_spec)
|
|
sharded_buffer_dict[name] = buffer_sharded
|
|
|
|
for name, buffer_sharded in sharded_buffer_dict.items():
|
|
setattr(target_module, name, buffer_sharded.detach().clone())
|
|
|
|
if node.op == 'get_attr':
|
|
root = node.graph.owning_module
|
|
atoms = node.target.split(".")
|
|
attr_len = len(atoms)
|
|
if attr_len == 1:
|
|
target_module = root
|
|
target = getattr(root, atoms[0])
|
|
else:
|
|
target_module = root
|
|
for atom in atoms[:-1]:
|
|
target_module = getattr(target_module, atom)
|
|
target = getattr(target_module, atoms[-1])
|
|
|
|
target_sharding_spec = node.sharding_spec
|
|
if target_sharding_spec.dim_partition_dict != {}:
|
|
origin_sharding_spec = ShardingSpec(device_mesh, target.shape, {})
|
|
setattr(target, 'sharding_spec', origin_sharding_spec)
|
|
# TODO: build a ColoParamter class to manager the distributed parameters
|
|
# we could use .data here, because all the operations just happen before the real training
|
|
# loop, so we don't need to track these operations in the autograd graph.
|
|
target.data = shape_consistency_manager.apply_for_autoparallel_runtime(
|
|
target.data, target.sharding_spec, target_sharding_spec).detach().clone()
|
|
|
|
assert hasattr(target_module, atoms[-1])
|
|
setattr(target_module, atoms[-1], target)
|
|
|
|
comm_actions = node.best_strategy.communication_actions
|
|
for operation_data, comm_action in comm_actions.items():
|
|
comm_spec_to_use = comm_action.comm_spec
|
|
# register hook to the parameters
|
|
if isinstance(node._meta_data, torch.nn.parameter.Parameter) and comm_action.comm_type == CommType.HOOK:
|
|
|
|
def wrapper(param, comm_spec, stream):
|
|
|
|
def hook_fn(grad):
|
|
with torch.cuda.stream(stream):
|
|
_all_reduce(grad, comm_spec, async_op=True)
|
|
|
|
param.register_hook(hook_fn)
|
|
|
|
wrapper(target, comm_spec_to_use, reduction_stream)
|
|
return gm
|
|
|
|
|
|
def implicit_comm_action_apply(gm: torch.fx.GraphModule):
|
|
"""
|
|
replace the origin kernel into kernel with implicit communication inside.
|
|
"""
|
|
pass
|
|
|
|
|
|
def runtime_preparation_pass(gm: torch.fx.GraphModule,
|
|
solution: List[int],
|
|
device_mesh: DeviceMesh,
|
|
strategies_constructor: StrategiesConstructor = None):
|
|
gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict = _solution_annotatation(
|
|
gm, solution, strategies_constructor)
|
|
gm = _size_value_converting(gm, device_mesh)
|
|
gm = _node_args_converting(gm, device_mesh)
|
|
# TODO: the pass below should be uncommented after the implementation of implicit_comm_action_apply_pass completed.
|
|
# gm = implicit_comm_action_apply(gm)
|
|
gm = _module_params_sharding(gm, device_mesh)
|
|
|
|
return gm, sharding_spec_convert_dict, origin_node_sharding_spec_dict, comm_actions_dict
|