Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

50 lines
2.0 KiB

import os
from colossalqa.retrieval_conversation_universal import UniversalRetrievalConversation
def test_en_retrievalQA():
data_path_en = os.environ.get("TEST_DATA_PATH_EN")
data_path_zh = os.environ.get("TEST_DATA_PATH_ZH")
en_model_path = os.environ.get("EN_MODEL_PATH")
zh_model_path = os.environ.get("ZH_MODEL_PATH")
zh_model_name = os.environ.get("ZH_MODEL_NAME")
en_model_name = os.environ.get("EN_MODEL_NAME")
sql_file_path = os.environ.get("SQL_FILE_PATH")
qa_session = UniversalRetrievalConversation(
files_en=[{"data_path": data_path_en, "name": "company information", "separator": "\n"}],
files_zh=[{"data_path": data_path_zh, "name": "company information", "separator": "\n"}],
zh_model_path=zh_model_path,
en_model_path=en_model_path,
zh_model_name=zh_model_name,
en_model_name=en_model_name,
sql_file_path=sql_file_path,
)
ans = qa_session.run("which company runs business in hotel industry?", which_language="en")
print(ans)
def test_zh_retrievalQA():
data_path_en = os.environ.get("TEST_DATA_PATH_EN")
data_path_zh = os.environ.get("TEST_DATA_PATH_ZH")
en_model_path = os.environ.get("EN_MODEL_PATH")
zh_model_path = os.environ.get("ZH_MODEL_PATH")
zh_model_name = os.environ.get("ZH_MODEL_NAME")
en_model_name = os.environ.get("EN_MODEL_NAME")
sql_file_path = os.environ.get("SQL_FILE_PATH")
qa_session = UniversalRetrievalConversation(
files_en=[{"data_path": data_path_en, "name": "company information", "separator": "\n"}],
files_zh=[{"data_path": data_path_zh, "name": "company information", "separator": "\n"}],
zh_model_path=zh_model_path,
en_model_path=en_model_path,
zh_model_name=zh_model_name,
en_model_name=en_model_name,
sql_file_path=sql_file_path,
)
ans = qa_session.run("哪家公司在经营酒店业务?", which_language="zh")
print(ans)
if __name__ == "__main__":
test_en_retrievalQA()
test_zh_retrievalQA()