mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
117 lines
4.6 KiB
117 lines
4.6 KiB
import os |
|
|
|
from colossalqa.data_loader.document_loader import DocumentLoader |
|
from colossalqa.local.llm import ColossalAPI, ColossalLLM |
|
from colossalqa.memory import ConversationBufferWithSummary |
|
from colossalqa.prompt.prompt import PROMPT_RETRIEVAL_QA_ZH |
|
from colossalqa.retriever import CustomRetriever |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
|
|
def test_memory_long(): |
|
model_path = os.environ.get("EN_MODEL_PATH") |
|
data_path = os.environ.get("TEST_DATA_PATH_EN") |
|
model_name = os.environ.get("EN_MODEL_NAME") |
|
sql_file_path = os.environ.get("SQL_FILE_PATH") |
|
|
|
if not os.path.exists(sql_file_path): |
|
os.makedirs(sql_file_path) |
|
|
|
colossal_api = ColossalAPI.get_api(model_name, model_path) |
|
llm = ColossalLLM(n=4, api=colossal_api) |
|
memory = ConversationBufferWithSummary( |
|
llm=llm, max_tokens=600, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True} |
|
) |
|
retriever_data = DocumentLoader([[data_path, "company information"]]).all_data |
|
|
|
# Split |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20) |
|
splits = text_splitter.split_documents(retriever_data) |
|
|
|
embedding = HuggingFaceEmbeddings( |
|
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} |
|
) |
|
|
|
# Create retriever |
|
information_retriever = CustomRetriever(k=3, sql_file_path=sql_file_path) |
|
information_retriever.add_documents(docs=splits, cleanup="incremental", mode="by_source", embedding=embedding) |
|
|
|
memory.initiate_document_retrieval_chain( |
|
llm, |
|
PROMPT_RETRIEVAL_QA_ZH, |
|
information_retriever, |
|
chain_type_kwargs={ |
|
"chat_history": "", |
|
}, |
|
) |
|
|
|
# This keep the prompt length excluding dialogues the same |
|
docs = information_retriever.get_relevant_documents("this is a test input.") |
|
prompt_length = memory.chain.prompt_length(docs, **{"question": "this is a test input.", "chat_history": ""}) |
|
remain = 600 - prompt_length |
|
have_summarization_flag = False |
|
for i in range(40): |
|
chat_history = memory.load_memory_variables({"question": "this is a test input.", "input_documents": docs})[ |
|
"chat_history" |
|
] |
|
|
|
assert memory.get_conversation_length() <= remain |
|
memory.save_context({"question": "this is a test input."}, {"output": "this is a test output."}) |
|
if "A summarization of historical conversation:" in chat_history: |
|
have_summarization_flag = True |
|
assert have_summarization_flag == True |
|
|
|
|
|
def test_memory_short(): |
|
model_path = os.environ.get("EN_MODEL_PATH") |
|
data_path = os.environ.get("TEST_DATA_PATH_EN") |
|
model_name = os.environ.get("EN_MODEL_NAME") |
|
sql_file_path = os.environ.get("SQL_FILE_PATH") |
|
|
|
if not os.path.exists(sql_file_path): |
|
os.makedirs(sql_file_path) |
|
|
|
colossal_api = ColossalAPI.get_api(model_name, model_path) |
|
llm = ColossalLLM(n=4, api=colossal_api) |
|
memory = ConversationBufferWithSummary( |
|
llm=llm, llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True} |
|
) |
|
retriever_data = DocumentLoader([[data_path, "company information"]]).all_data |
|
|
|
# Split |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=20) |
|
splits = text_splitter.split_documents(retriever_data) |
|
|
|
embedding = HuggingFaceEmbeddings( |
|
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} |
|
) |
|
|
|
# create retriever |
|
information_retriever = CustomRetriever(k=3, sql_file_path=sql_file_path) |
|
information_retriever.add_documents(docs=splits, cleanup="incremental", mode="by_source", embedding=embedding) |
|
|
|
memory.initiate_document_retrieval_chain( |
|
llm, |
|
PROMPT_RETRIEVAL_QA_ZH, |
|
information_retriever, |
|
chain_type_kwargs={ |
|
"chat_history": "", |
|
}, |
|
) |
|
|
|
# This keep the prompt length excluding dialogues the same |
|
docs = information_retriever.get_relevant_documents("this is a test input.", return_scores=True) |
|
|
|
for i in range(4): |
|
chat_history = memory.load_memory_variables({"question": "this is a test input.", "input_documents": docs})[ |
|
"chat_history" |
|
] |
|
assert chat_history.count("Assistant: this is a test output.") == i |
|
assert chat_history.count("Human: this is a test input.") == i |
|
memory.save_context({"question": "this is a test input."}, {"output": "this is a test output."}) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_memory_short() |
|
test_memory_long()
|
|
|