mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
131 lines
5.1 KiB
131 lines
5.1 KiB
""" |
|
Multilingual retrieval based conversation system backed by ChatGPT |
|
""" |
|
|
|
import argparse |
|
import os |
|
|
|
from colossalqa.data_loader.document_loader import DocumentLoader |
|
from colossalqa.memory import ConversationBufferWithSummary |
|
from colossalqa.retriever import CustomRetriever |
|
from langchain import LLMChain |
|
from langchain.chains import RetrievalQA |
|
from langchain.embeddings import HuggingFaceEmbeddings |
|
from langchain.llms import OpenAI |
|
from langchain.prompts.prompt import PromptTemplate |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Multilingual retrieval based conversation system backed by ChatGPT") |
|
parser.add_argument("--open_ai_key_path", type=str, default=None, help="path to the model") |
|
parser.add_argument( |
|
"--sql_file_path", type=str, default=None, help="path to the a empty folder for storing sql files for indexing" |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
if not os.path.exists(args.sql_file_path): |
|
os.makedirs(args.sql_file_path) |
|
|
|
# Setup openai key |
|
# Set env var OPENAI_API_KEY or load from a file |
|
openai_key = open(args.open_ai_key_path).read() |
|
os.environ["OPENAI_API_KEY"] = openai_key |
|
|
|
llm = OpenAI(temperature=0.6) |
|
|
|
information_retriever = CustomRetriever(k=3, sql_file_path=args.sql_file_path, verbose=True) |
|
# VectorDB |
|
embedding = HuggingFaceEmbeddings( |
|
model_name="moka-ai/m3e-base", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": False} |
|
) |
|
|
|
# Define memory with summarization ability |
|
memory = ConversationBufferWithSummary(llm=llm) |
|
|
|
# Load data to vector store |
|
print("Select files for constructing retriever") |
|
documents = [] |
|
while True: |
|
file = input("Enter a file path or press Enter directory without input to exit:").strip() |
|
if file == "": |
|
break |
|
data_name = input("Enter a short description of the data:") |
|
retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data |
|
|
|
# Split |
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0) |
|
splits = text_splitter.split_documents(retriever_data) |
|
documents.extend(splits) |
|
# Create retriever |
|
information_retriever.add_documents(docs=documents, cleanup="incremental", mode="by_source", embedding=embedding) |
|
|
|
prompt_template = """Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. |
|
If the answer cannot be inferred based on the given context, please don't share false information. |
|
Use the context and chat history to respond to the human's input at the end or carry on the conversation. You should generate one response only. No following up is needed. |
|
|
|
context: |
|
{context} |
|
|
|
chat history |
|
{chat_history} |
|
|
|
Human: {question} |
|
Assistant:""" |
|
|
|
prompt_template_disambiguate = """You are a helpful, respectful and honest assistant. You always follow the instruction. |
|
Please replace any ambiguous references in the given sentence with the specific names or entities mentioned in the chat history or just output the original sentence if no chat history is provided or if the sentence doesn't contain ambiguous references. Your output should be the disambiguated sentence itself (in the same line as "disambiguated sentence:") and contain nothing else. |
|
|
|
Here is an example: |
|
Chat history: |
|
Human: I have a friend, Mike. Do you know him? |
|
Assistant: Yes, I know a person named Mike |
|
|
|
sentence: What's his favorite food? |
|
disambiguated sentence: What's Mike's favorite food? |
|
END OF EXAMPLE |
|
|
|
Chat history: |
|
{chat_history} |
|
|
|
sentence: {input} |
|
disambiguated sentence:""" |
|
|
|
PROMPT = PromptTemplate(template=prompt_template, input_variables=["question", "chat_history", "context"]) |
|
|
|
memory.initiate_document_retrieval_chain( |
|
llm, |
|
PROMPT, |
|
information_retriever, |
|
chain_type_kwargs={ |
|
"chat_history": "", |
|
}, |
|
) |
|
|
|
PROMPT_DISAMBIGUATE = PromptTemplate( |
|
template=prompt_template_disambiguate, input_variables=["chat_history", "input"] |
|
) |
|
|
|
llm_chain = RetrievalQA.from_chain_type( |
|
llm=llm, |
|
verbose=False, |
|
chain_type="stuff", |
|
retriever=information_retriever, |
|
chain_type_kwargs={"prompt": PROMPT, "memory": memory}, |
|
) |
|
llm_chain_disambiguate = LLMChain(llm=llm, prompt=PROMPT_DISAMBIGUATE) |
|
|
|
def disambiguity(input): |
|
out = llm_chain_disambiguate.run({"input": input, "chat_history": memory.buffer}) |
|
return out.split("\n")[0] |
|
|
|
information_retriever.set_rephrase_handler(disambiguity) |
|
|
|
while True: |
|
user_input = input("User: ") |
|
if " end " in user_input: |
|
print("Agent: Happy to chat with you :)") |
|
break |
|
agent_response = llm_chain.run(user_input) |
|
agent_response = agent_response.split("\n")[0] |
|
print(f"Agent: {agent_response}")
|
|
|