Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

125 lines
4.9 KiB

"""
Script for the multilingual conversation based experimental AI agent
We used ChatGPT as the language model
You need openai api key to run this script
"""
import argparse
import os
from colossalqa.data_loader.document_loader import DocumentLoader
from colossalqa.data_loader.table_dataloader import TableLoader
from langchain import LLMChain, OpenAI
from langchain.agents import Tool, ZeroShotAgent
from langchain.agents.agent import AgentExecutor
from langchain.agents.agent_toolkits import create_retriever_tool
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.llms import OpenAI
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
from langchain.memory.chat_memory import ChatMessageHistory
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.utilities import SQLDatabase
from langchain.vectorstores import Chroma
from langchain_experimental.sql import SQLDatabaseChain
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Experimental AI agent powered by ChatGPT")
parser.add_argument("--open_ai_key_path", type=str, default=None, help="path to the plain text open_ai_key file")
args = parser.parse_args()
# Setup openai key
# Set env var OPENAI_API_KEY or load from a file
openai_key = open(args.open_ai_key_path).read()
os.environ["OPENAI_API_KEY"] = openai_key
# Load data served on sql
print("Select files for constructing sql database")
tools = []
llm = OpenAI(temperature=0.0)
while True:
file = input("Select a file to load or press Enter to exit:")
if file == "":
break
data_name = input("Enter a short description of the data:")
table_loader = TableLoader(
[[file, data_name.replace(" ", "_")]], sql_path=f"sqlite:///{data_name.replace(' ', '_')}.db"
)
sql_path = table_loader.get_sql_path()
# Create sql database
db = SQLDatabase.from_uri(sql_path)
print(db.get_table_info())
db_chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
name = f"Query the SQL database regarding {data_name}"
description = (
f"useful for when you need to answer questions based on data stored on a SQL database regarding {data_name}"
)
tools.append(
Tool(
name=name,
func=db_chain.run,
description=description,
)
)
print(f"Added sql dataset\n\tname={name}\n\tdescription:{description}")
# VectorDB
embedding = OpenAIEmbeddings()
# Load data serve on sql
print("Select files for constructing retriever")
while True:
file = input("Select a file to load or press Enter to exit:")
if file == "":
break
data_name = input("Enter a short description of the data:")
retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data
# Split
text_splitter = RecursiveCharacterTextSplitter(chunk_size=200, chunk_overlap=0)
splits = text_splitter.split_documents(retriever_data)
# Create vector store
vectordb = Chroma.from_documents(documents=splits, embedding=embedding)
# Create retriever
retriever = vectordb.as_retriever(
search_type="similarity_score_threshold", search_kwargs={"score_threshold": 0.5, "k": 5}
)
# Add to tool chain
name = f"Searches and returns documents regarding {data_name}."
tools.append(create_retriever_tool(retriever, data_name, name))
prefix = """Have a conversation with a human, answering the following questions as best you can. You have access to the following tools. If none of the tools can be used to answer the question. Do not share uncertain answer unless you think answering the question doesn't need any background information. In that case, try to answer the question directly."""
suffix = """You are provided with the following background knowledge:
Begin!"
{chat_history}
Question: {input}
{agent_scratchpad}"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history", "agent_scratchpad"],
)
memory = ConversationBufferMemory(memory_key="chat_history", chat_memory=ChatMessageHistory())
llm_chain = LLMChain(llm=OpenAI(temperature=0.7), prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_chain = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True, memory=memory)
while True:
user_input = input("User: ")
if " end " in user_input:
print("Agent: Happy to chat with you :)")
break
agent_response = agent_chain.run(user_input)
print(f"Agent: {agent_response}")
table_loader.sql_engine.dispose()