Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

94 lines
3.7 KiB

"""
Script for Chinese retrieval based conversation system backed by ChatGLM
"""
from typing import Tuple
from colossalqa.chain.retrieval_qa.base import RetrievalQA
from colossalqa.local.llm import ColossalAPI, ColossalLLM
from colossalqa.memory import ConversationBufferWithSummary
from colossalqa.mylogging import get_logger
from colossalqa.prompt.prompt import PROMPT_DISAMBIGUATE_ZH, PROMPT_RETRIEVAL_QA_ZH, SUMMARY_PROMPT_ZH
from colossalqa.retriever import CustomRetriever
from langchain import LLMChain
logger = get_logger()
class ChineseRetrievalConversation:
"""
Wrapper class for Chinese retrieval conversation system
"""
def __init__(self, retriever: CustomRetriever, model_path: str, model_name: str) -> None:
"""
Setup retrieval qa chain for Chinese retrieval based QA
"""
# Local coati api
logger.info(f"model_name: {model_name}; model_path: {model_path}", verbose=True)
colossal_api = ColossalAPI.get_api(model_name, model_path)
self.llm = ColossalLLM(n=1, api=colossal_api)
# Define the retriever
self.retriever = retriever
# Define the chain to preprocess the input
# Disambiguate the input. e.g. "What is the capital of that country?" -> "What is the capital of France?"
# Prompt is summarization prompt
self.llm_chain_disambiguate = LLMChain(
llm=self.llm,
prompt=PROMPT_DISAMBIGUATE_ZH,
llm_kwargs={"max_new_tokens": 30, "temperature": 0.6, "do_sample": True},
)
self.retriever.set_rephrase_handler(self.disambiguity)
# Define memory with summarization ability
self.memory = ConversationBufferWithSummary(
llm=self.llm,
prompt=SUMMARY_PROMPT_ZH,
human_prefix="用户",
ai_prefix="Assistant",
max_tokens=2000,
llm_kwargs={"max_new_tokens": 50, "temperature": 0.6, "do_sample": True},
)
self.memory.initiate_document_retrieval_chain(
self.llm,
PROMPT_RETRIEVAL_QA_ZH,
self.retriever,
chain_type_kwargs={
"chat_history": "",
},
)
self.retrieval_chain = RetrievalQA.from_chain_type(
llm=self.llm,
verbose=False,
chain_type="stuff",
retriever=self.retriever,
chain_type_kwargs={"prompt": PROMPT_RETRIEVAL_QA_ZH, "memory": self.memory},
llm_kwargs={"max_new_tokens": 150, "temperature": 0.9, "do_sample": True},
)
def disambiguity(self, input: str):
out = self.llm_chain_disambiguate.run(input=input, chat_history=self.memory.buffer, stop=["\n"])
return out.split("\n")[0]
@classmethod
def from_retriever(
cls, retriever: CustomRetriever, model_path: str, model_name: str
) -> "ChineseRetrievalConversation":
return cls(retriever, model_path, model_name)
def run(self, user_input: str, memory: ConversationBufferWithSummary) -> Tuple[str, ConversationBufferWithSummary]:
if memory:
# TODO add translation chain here
self.memory.buffered_history.messages = memory.buffered_history.messages
self.memory.summarized_history_temp.messages = memory.summarized_history_temp.messages
return (
self.retrieval_chain.run(
query=user_input,
stop=["</答案>"],
doc_prefix="支持文档",
rejection_trigger_keywords=["无法回答该问题"],
rejection_answer="抱歉,根据提供的信息无法回答该问题。",
).split("\n")[0],
self.memory,
)