mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
116 lines
4.1 KiB
116 lines
4.1 KiB
""" |
|
Class for loading table type data. please refer to Pandas-Input/Output for file format details. |
|
""" |
|
|
|
|
|
import glob |
|
import os |
|
|
|
import pandas as pd |
|
from colossalqa.mylogging import get_logger |
|
from colossalqa.utils import drop_table |
|
from sqlalchemy import create_engine |
|
|
|
logger = get_logger() |
|
|
|
SUPPORTED_DATA_FORMAT = [".csv", ".xlsx", ".xls", ".json", ".html", ".h5", ".hdf5", ".parquet", ".feather", ".dta"] |
|
|
|
|
|
class TableLoader: |
|
""" |
|
Load tables from different files and serve a sql database for database operations |
|
""" |
|
|
|
def __init__(self, files: str, sql_path: str = "sqlite:///mydatabase.db", verbose=False, **kwargs) -> None: |
|
""" |
|
Args: |
|
files: list of files (list[file path, name]) |
|
sql_path: how to serve the sql database |
|
**kwargs: keyword type arguments, useful for certain document types |
|
""" |
|
self.data = {} |
|
self.verbose = verbose |
|
self.sql_path = sql_path |
|
self.kwargs = kwargs |
|
self.sql_engine = create_engine(self.sql_path) |
|
drop_table(self.sql_engine) |
|
|
|
self.sql_engine = create_engine(self.sql_path) |
|
for item in files: |
|
path = item[0] |
|
dataset_name = item[1] |
|
if not os.path.exists(path): |
|
raise FileNotFoundError(f"{path} doesn't exists") |
|
if not any([path.endswith(i) for i in SUPPORTED_DATA_FORMAT]): |
|
raise TypeError(f"{path} not supported. Supported type {SUPPORTED_DATA_FORMAT}") |
|
|
|
logger.info("loading data", verbose=self.verbose) |
|
self.load_data(path) |
|
logger.info("data loaded", verbose=self.verbose) |
|
self.to_sql(path, dataset_name) |
|
|
|
def load_data(self, path): |
|
""" |
|
Load data and serve the data as sql database. |
|
Data must be in pandas format |
|
""" |
|
files = [] |
|
# Handle glob expression |
|
try: |
|
files = glob.glob(path) |
|
except Exception as e: |
|
logger.error(e) |
|
if len(files) == 0: |
|
raise ValueError("Unsupported file/directory format. For directories, please use glob expression") |
|
elif len(files) == 1: |
|
path = files[0] |
|
else: |
|
for file in files: |
|
self.load_data(file) |
|
|
|
if path.endswith(".csv"): |
|
# Load csv |
|
self.data[path] = pd.read_csv(path) |
|
elif path.endswith(".xlsx") or path.endswith(".xls"): |
|
# Load excel |
|
self.data[path] = pd.read_excel(path) # You can adjust the sheet_name as needed |
|
elif path.endswith(".json"): |
|
# Load json |
|
self.data[path] = pd.read_json(path) |
|
elif path.endswith(".html"): |
|
# Load html |
|
html_tables = pd.read_html(path) |
|
# Choose the desired table from the list of DataFrame objects |
|
self.data[path] = html_tables[0] # You may need to adjust this index |
|
elif path.endswith(".h5") or path.endswith(".hdf5"): |
|
# Load h5 |
|
self.data[path] = pd.read_hdf(path, key=self.kwargs.get("key", "data")) # You can adjust the key as needed |
|
elif path.endswith(".parquet"): |
|
# Load parquet |
|
self.data[path] = pd.read_parquet(path, engine="fastparquet") |
|
elif path.endswith(".feather"): |
|
# Load feather |
|
self.data[path] = pd.read_feather(path) |
|
elif path.endswith(".dta"): |
|
# Load dta |
|
self.data[path] = pd.read_stata(path) |
|
else: |
|
raise ValueError("Unsupported file format") |
|
|
|
def to_sql(self, path, table_name): |
|
""" |
|
Serve the data as sql database. |
|
""" |
|
self.data[path].to_sql(table_name, con=self.sql_engine, if_exists="replace", index=False) |
|
logger.info(f"Loaded to Sqlite3\nPath: {path}", verbose=self.verbose) |
|
return self.sql_path |
|
|
|
def get_sql_path(self): |
|
return self.sql_path |
|
|
|
def __del__(self): |
|
if self.sql_engine: |
|
drop_table(self.sql_engine) |
|
self.sql_engine.dispose() |
|
del self.data |
|
del self.sql_engine
|
|
|