Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

116 lines
4.1 KiB

"""
Class for loading table type data. please refer to Pandas-Input/Output for file format details.
"""
import glob
import os
import pandas as pd
from colossalqa.mylogging import get_logger
from colossalqa.utils import drop_table
from sqlalchemy import create_engine
logger = get_logger()
SUPPORTED_DATA_FORMAT = [".csv", ".xlsx", ".xls", ".json", ".html", ".h5", ".hdf5", ".parquet", ".feather", ".dta"]
class TableLoader:
"""
Load tables from different files and serve a sql database for database operations
"""
def __init__(self, files: str, sql_path: str = "sqlite:///mydatabase.db", verbose=False, **kwargs) -> None:
"""
Args:
files: list of files (list[file path, name])
sql_path: how to serve the sql database
**kwargs: keyword type arguments, useful for certain document types
"""
self.data = {}
self.verbose = verbose
self.sql_path = sql_path
self.kwargs = kwargs
self.sql_engine = create_engine(self.sql_path)
drop_table(self.sql_engine)
self.sql_engine = create_engine(self.sql_path)
for item in files:
path = item[0]
dataset_name = item[1]
if not os.path.exists(path):
raise FileNotFoundError(f"{path} doesn't exists")
if not any([path.endswith(i) for i in SUPPORTED_DATA_FORMAT]):
raise TypeError(f"{path} not supported. Supported type {SUPPORTED_DATA_FORMAT}")
logger.info("loading data", verbose=self.verbose)
self.load_data(path)
logger.info("data loaded", verbose=self.verbose)
self.to_sql(path, dataset_name)
def load_data(self, path):
"""
Load data and serve the data as sql database.
Data must be in pandas format
"""
files = []
# Handle glob expression
try:
files = glob.glob(path)
except Exception as e:
logger.error(e)
if len(files) == 0:
raise ValueError("Unsupported file/directory format. For directories, please use glob expression")
elif len(files) == 1:
path = files[0]
else:
for file in files:
self.load_data(file)
if path.endswith(".csv"):
# Load csv
self.data[path] = pd.read_csv(path)
elif path.endswith(".xlsx") or path.endswith(".xls"):
# Load excel
self.data[path] = pd.read_excel(path) # You can adjust the sheet_name as needed
elif path.endswith(".json"):
# Load json
self.data[path] = pd.read_json(path)
elif path.endswith(".html"):
# Load html
html_tables = pd.read_html(path)
# Choose the desired table from the list of DataFrame objects
self.data[path] = html_tables[0] # You may need to adjust this index
elif path.endswith(".h5") or path.endswith(".hdf5"):
# Load h5
self.data[path] = pd.read_hdf(path, key=self.kwargs.get("key", "data")) # You can adjust the key as needed
elif path.endswith(".parquet"):
# Load parquet
self.data[path] = pd.read_parquet(path, engine="fastparquet")
elif path.endswith(".feather"):
# Load feather
self.data[path] = pd.read_feather(path)
elif path.endswith(".dta"):
# Load dta
self.data[path] = pd.read_stata(path)
else:
raise ValueError("Unsupported file format")
def to_sql(self, path, table_name):
"""
Serve the data as sql database.
"""
self.data[path].to_sql(table_name, con=self.sql_engine, if_exists="replace", index=False)
logger.info(f"Loaded to Sqlite3\nPath: {path}", verbose=self.verbose)
return self.sql_path
def get_sql_path(self):
return self.sql_path
def __del__(self):
if self.sql_engine:
drop_table(self.sql_engine)
self.sql_engine.dispose()
del self.data
del self.sql_engine