mirror of https://github.com/hpcaitech/ColossalAI
345 lines
13 KiB
Python
345 lines
13 KiB
Python
import torch
|
|
import inspect
|
|
from colossalai.utils.model.utils import InsertPostInitMethodToModuleSubClasses, call_to_str
|
|
from colossalai.builder.pipeline import partition_uniform, partition_balanced
|
|
from colossalai.nn.layer.utils import CheckpointModule
|
|
from colossalai.tensor import ColoTensor
|
|
|
|
|
|
class PipelinableContext(InsertPostInitMethodToModuleSubClasses):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self._layer_spec_dict = {}
|
|
self._root_children = None
|
|
self._model = None
|
|
self._layer_spec_list = []
|
|
self._func_dict = {}
|
|
self._policy = "balanced"
|
|
|
|
@property
|
|
def policy(self):
|
|
return self._policy
|
|
|
|
@property
|
|
def layers_count(self):
|
|
return len(self._layer_spec_list)
|
|
|
|
@property
|
|
def funcs_count(self):
|
|
return len(self._func_dict)
|
|
|
|
def _pre_context_exec(self):
|
|
"""
|
|
The Callback function when entering the context
|
|
"""
|
|
|
|
# reserve rng states
|
|
self.cpu_rng_state = torch.get_rng_state()
|
|
self.cuda_rng_state = torch.cuda.get_rng_state()
|
|
|
|
def _post_context_exec(self):
|
|
"""
|
|
The callback function when exiting context.
|
|
"""
|
|
|
|
# reset rng states
|
|
torch.set_rng_state(self.cpu_rng_state)
|
|
torch.cuda.set_rng_state(self.cuda_rng_state)
|
|
|
|
def _post_init_method(self, module: torch.nn.Module, *args, **kwargs):
|
|
"""
|
|
The function to call at the end of the constructor of each module.
|
|
NOTE() The module may be passed to this function multiple times.
|
|
"""
|
|
module_id = id(module)
|
|
modified_args = []
|
|
for obj in args:
|
|
if issubclass(obj.__class__, torch.nn.modules.module.Module):
|
|
obj = self._layer_spec_dict[id(obj)]
|
|
modified_args.append(obj)
|
|
|
|
modified_kwargs = {}
|
|
for k, v in kwargs.items():
|
|
if issubclass(v.__class__, torch.nn.modules.module.Module):
|
|
v = self._layer_spec_dict[id(v)]
|
|
# (lyl)TODO: analyse ColoTensor as well
|
|
modified_kwargs[k] = v
|
|
|
|
modified_args = tuple(modified_args)
|
|
self._root_children = list(module.children())
|
|
self._model = module
|
|
layer_spec = LayerSpec(module.__class__, *modified_args, **modified_kwargs)
|
|
layer_spec.set_children(module.children())
|
|
self._layer_spec_dict[module_id] = layer_spec
|
|
name_list = []
|
|
for name, param in module.named_parameters():
|
|
if isinstance(param, ColoTensor):
|
|
continue
|
|
name_list.append((name, param))
|
|
|
|
for name, param in name_list:
|
|
delattr(module, name)
|
|
setattr(module, name, ColoTensor.from_torch_tensor(param))
|
|
|
|
def to_layer_list(self, exec_seq=None):
|
|
"""
|
|
Create a layer spec list and func list with execution sequence given by user.
|
|
If exec_seq is None, we will take the module initizing order as execution order.
|
|
"""
|
|
if exec_seq is None:
|
|
# if user do not provide the model executing sequence, we use the initialization order as the executing order.
|
|
children_name = []
|
|
for child in self._root_children:
|
|
layer_spec = self._layer_spec_dict[id(child)]
|
|
if layer_spec.typename in (torch.nn.modules.container.ModuleList,
|
|
torch.nn.modules.container.Sequential):
|
|
for child_in_container in layer_spec.children:
|
|
self._layer_spec_list.append(self._layer_spec_dict[id(child_in_container)])
|
|
for name, module in self._model.named_modules():
|
|
if id(module) == id(child_in_container):
|
|
children_name.append(name)
|
|
break
|
|
|
|
else:
|
|
self._layer_spec_list.append(layer_spec)
|
|
for name, module in self._model.named_modules():
|
|
if id(module) == id(child):
|
|
children_name.append(name)
|
|
break
|
|
|
|
else:
|
|
front_funcs_list = []
|
|
for index, element in enumerate(exec_seq):
|
|
if isinstance(element, str):
|
|
module = dict(self._model.named_modules())[element]
|
|
layer_spec = self._layer_spec_dict[id(module)]
|
|
if len(front_funcs_list) != 0:
|
|
func_key = (layer_spec, "front")
|
|
if func_key not in self._func_dict:
|
|
self._func_dict[func_key] = []
|
|
for f in front_funcs_list:
|
|
self._func_dict[func_key].append(f)
|
|
front_funcs_list = []
|
|
func_key = (layer_spec, "behind")
|
|
self._layer_spec_list.append(layer_spec)
|
|
elif isinstance(element, tuple) and element[1] == "front":
|
|
front_funcs_list.append(element[0])
|
|
else:
|
|
if func_key not in self._func_dict:
|
|
self._func_dict[func_key] = []
|
|
if isinstance(element, tuple):
|
|
self._func_dict[func_key].append(element[0])
|
|
else:
|
|
self._func_dict[func_key].append(element)
|
|
|
|
def partition(self, num_chunks, pipeline_size, rank):
|
|
"""
|
|
Partitioned model will be built respect to partion policy.
|
|
The real module instance will be built in this method.
|
|
"""
|
|
if isinstance(self._policy, str):
|
|
if self._policy == "uniform":
|
|
parts = partition_uniform(len(self._layer_spec_list), pipeline_size, num_chunks)[rank]
|
|
elif self._policy == "balanced":
|
|
param_counts = []
|
|
for layer_spec in self._layer_spec_list:
|
|
param_counts.append(layer_spec.count_params())
|
|
parts = partition_balanced(param_counts, pipeline_size, num_chunks)[rank]
|
|
else:
|
|
raise ValueError("A string partition policy should be one of ['uniform', 'balanced'].")
|
|
elif isinstance(self._policy, dict):
|
|
parts = self._policy[rank]
|
|
else:
|
|
raise ValueError("A partition policy should be either a string or a dictionary.")
|
|
|
|
layers_to_build = []
|
|
for start, end in parts:
|
|
layers_to_build += self._layer_spec_list[start:end]
|
|
behind_func_dict_in_partition = {}
|
|
front_func_dict_in_partition = {}
|
|
module_list_in_partition = []
|
|
for layer in layers_to_build:
|
|
module = layer.build()
|
|
module_list_in_partition.append(module)
|
|
if (layer, "front") in self._func_dict:
|
|
front_func_dict_in_partition[id(module)] = self._func_dict[(layer, "front")]
|
|
elif (layer, "behind") in self._func_dict:
|
|
behind_func_dict_in_partition[id(module)] = self._func_dict[(layer, "behind")]
|
|
module_list_in_partition = torch.nn.ModuleList(module_list_in_partition)
|
|
pipeline_model = PipelinableModel(module_list_in_partition, front_func_dict_in_partition,
|
|
behind_func_dict_in_partition)
|
|
|
|
return pipeline_model
|
|
|
|
def load_policy(self, policy):
|
|
self._policy = policy
|
|
|
|
|
|
def _build_kwargs_for_module(function, kw_dict):
|
|
"""
|
|
Generally, the first argument of module.forward is an input tensor come from the previous layer.
|
|
Therefore, we just filter the kwargs from second element of the dictionary.
|
|
"""
|
|
sig = inspect.signature(function)
|
|
if len(sig.parameters) <= 1:
|
|
return None
|
|
args_name_list = list(sig.parameters.keys())
|
|
kw_dict = {k: v for k, v in kw_dict.items() if k in args_name_list[1:]}
|
|
return kw_dict
|
|
|
|
|
|
def _build_kwargs_for_function(function, kw_dict):
|
|
sig = inspect.signature(function)
|
|
kw_dict = {k: v for k, v in kw_dict.items() if k in sig.parameters}
|
|
if len(kw_dict) == 0:
|
|
return None
|
|
return kw_dict
|
|
|
|
|
|
def _exec_func_with_kwargs(func, kw_dict, input_tensor, kwargs):
|
|
"""
|
|
We suppose the callable object passed to to_layer_list method in two purpose:
|
|
a. use the callable object to modify input tensor, such as \
|
|
lambda x: torch.flatten(x, 1)
|
|
b. use the callable object to modify kwargs value, such as \
|
|
def foo(attention_mask=None):
|
|
if attention_mask is not None:
|
|
batch_size = input_ids.shape[0]
|
|
attention_mask = attention_mask.view(batch_size, -1)
|
|
return attention_mask
|
|
"""
|
|
|
|
if kw_dict is not None:
|
|
rst = func(**kw_dict)
|
|
if isinstance(rst, tuple):
|
|
for i, k in enumerate(kw_dict.keys()):
|
|
kwargs[k] = rst[i]
|
|
else:
|
|
for k in kw_dict.keys():
|
|
kwargs[k] = rst
|
|
return input_tensor
|
|
return func(input_tensor)
|
|
|
|
|
|
def _exec_funcs_with_kwargs(func_dict, func_key, input_tensor, kwargs):
|
|
|
|
assert func_key in func_dict, f"{func_key} is not in the function_dict."
|
|
funcs_to_exec = func_dict[func_key]
|
|
if isinstance(funcs_to_exec, list):
|
|
for f in funcs_to_exec:
|
|
f_kwargs = _build_kwargs_for_function(f, kwargs)
|
|
input_tensor = _exec_func_with_kwargs(f, f_kwargs, input_tensor, kwargs)
|
|
else:
|
|
f_kwargs = _build_kwargs_for_function(funcs_to_exec, kwargs)
|
|
input_tensor = _exec_func_with_kwargs(funcs_to_exec, f_kwargs, input_tensor, kwargs)
|
|
|
|
return input_tensor
|
|
|
|
|
|
class PipelinableModel(torch.nn.Module):
|
|
|
|
def __init__(self, module_list, front_func_dict, behind_func_dict):
|
|
super().__init__()
|
|
self._module_list = module_list
|
|
self._front_func_dict = front_func_dict
|
|
self._behind_func_dict = behind_func_dict
|
|
|
|
def forward(self, input_tensor, **kwargs):
|
|
|
|
for module in self._module_list:
|
|
|
|
if id(module) in self._front_func_dict:
|
|
input_tensor = _exec_funcs_with_kwargs(self._front_func_dict, id(module), input_tensor, kwargs)
|
|
|
|
if isinstance(module, CheckpointModule):
|
|
forward_func = module._forward
|
|
else:
|
|
forward_func = module.forward
|
|
if input_tensor is None:
|
|
module_kwargs = _build_kwargs_for_function(forward_func, kwargs)
|
|
else:
|
|
module_kwargs = _build_kwargs_for_module(forward_func, kwargs)
|
|
if module_kwargs is not None and input_tensor is not None:
|
|
if isinstance(module, CheckpointModule):
|
|
convert_kwargs_to_args = []
|
|
for v in module_kwargs.values():
|
|
convert_kwargs_to_args.append(v)
|
|
rst = module(input_tensor, *convert_kwargs_to_args)
|
|
else:
|
|
rst = module(input_tensor, **module_kwargs)
|
|
if isinstance(rst, tuple):
|
|
input_tensor = rst[0]
|
|
else:
|
|
input_tensor = rst
|
|
elif module_kwargs is not None and input_tensor is None:
|
|
if isinstance(module, CheckpointModule):
|
|
convert_kwargs_to_args = []
|
|
for v in module_kwargs.values():
|
|
convert_kwargs_to_args.append(v)
|
|
rst = module(input_tensor, *convert_kwargs_to_args)
|
|
else:
|
|
rst = module(**module_kwargs)
|
|
if isinstance(rst, tuple):
|
|
input_tensor = rst[0]
|
|
else:
|
|
input_tensor = rst
|
|
else:
|
|
input_tensor = module(input_tensor)
|
|
|
|
if id(module) in self._behind_func_dict:
|
|
input_tensor = _exec_funcs_with_kwargs(self._behind_func_dict, id(module), input_tensor, kwargs)
|
|
|
|
return input_tensor
|
|
|
|
|
|
class LayerSpec:
|
|
|
|
def __init__(self, typename, *module_args, **module_kwargs):
|
|
self.typename = typename
|
|
self.module_args = module_args
|
|
self.module_kwargs = module_kwargs
|
|
self.children = None
|
|
self._param_count = 0
|
|
|
|
if not issubclass(typename, torch.nn.Module):
|
|
raise RuntimeError('LayerSpec only supports torch.nn.Module types.')
|
|
|
|
def __repr__(self):
|
|
return call_to_str(self.typename.__name__, self.module_args, self.module_kwargs)
|
|
|
|
@property
|
|
def param_count(self):
|
|
return self._param_count
|
|
|
|
def build(self):
|
|
"""Build the stored specification."""
|
|
|
|
recovered_args = []
|
|
for obj in self.module_args:
|
|
if isinstance(obj, LayerSpec):
|
|
obj = obj.build()
|
|
recovered_args.append(obj)
|
|
recovered_args = tuple(recovered_args)
|
|
|
|
recovered_kwargs = {}
|
|
for k, v in self.module_kwargs.items():
|
|
if isinstance(v, LayerSpec):
|
|
v = v.build()
|
|
recovered_kwargs[k] = v
|
|
|
|
return self.typename(*recovered_args, **recovered_kwargs)
|
|
|
|
def set_children(self, children):
|
|
self.children = children
|
|
|
|
def count_params(self):
|
|
self._param_count = 0
|
|
layer = self.build()
|
|
for param in layer.parameters():
|
|
self._param_count += param.numel()
|
|
return self._param_count
|
|
|
|
def reset_param_count(self):
|
|
self._param_count = 0
|