ColossalAI/colossalai/kernel/cuda_native/multihead_attention.py

257 lines
10 KiB
Python

import math
from dataclasses import dataclass
import torch
from torch import nn
from torch.autograd import Function
def check_config(config):
if config.hidden_size % config.nhead != 0:
raise Exception("hidden_size % nhead != 0")
factor = 8 if config.fp16 else 4
upbound = factor * 1024 * 4
if config.hidden_size > upbound:
# as required by ln backward kernel currently
raise Exception(f"hidden_size > {upbound}")
head_dim = config.hidden_size // config.nhead
if head_dim % factor != 0:
# as required by reshape kernel
raise Exception(f"head_dim({head_dim}) % {factor} != 0")
def calc_offset(sizes):
offsets = [0]
tmp = 0
for x in sizes:
tmp += x
offsets.append(tmp)
return offsets
colossal_multihead_attention = None
@dataclass
class Config:
max_batch_tokens: int # max batch token numbers
max_seq_len: int # max sequence length
hidden_size: int # size of transformer hidden layers
nhead: int # number of heads in attention
attn_prob_dropout_ratio: float # attention score dropout ratio
hidden_dropout_ratio: float # dropout ration before residual
norm_first: bool # norm_first
fp16: bool # fp16 presion
class MultiHeadAttention1DFunc(Function):
@staticmethod
def forward(ctx, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight, out_proj_bias, norm_weight,
norm_bias, config):
cuda_module = colossal_multihead_attention
forward_func = (cuda_module.multihead_attention_fw_fp16
if config.fp16 else cuda_module.multihead_attention_fw_fp32)
if config.fp16:
input = input.to(torch.half)
input_mask = input_mask.to(torch.half)
(output,) = forward_func(config.layer_id, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight,
out_proj_bias, norm_weight, norm_bias, config.training, config.norm_first)
if config.is_grad_enabled and config.training:
ctx.save_for_backward(output, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight,
out_proj_bias, norm_weight, norm_bias)
ctx.config = config
return output
@staticmethod
def backward(ctx, grad_output):
assert ctx.config.training
cuda_module = colossal_multihead_attention
backward_func = (cuda_module.multihead_attention_bw_fp16
if ctx.config.fp16 else cuda_module.multihead_attention_bw_fp32)
output, input, input_mask, in_proj_weight, in_proj_bias, out_proj_weight, \
out_proj_bias, norm_weight, norm_bias = ctx.saved_tensors
grad_input = None
grad_in_proj_weight = None
grad_in_proj_bias = None
grad_out_proj_weight = None
grad_out_proj_bias = None
grad_norm_weight = None
grad_norm_bias = None
if ctx.config.fp16:
grad_output = grad_output.to(torch.half)
output = output.to(torch.half)
input = input.to(torch.half)
input_mask = input_mask.to(torch.half)
grad_input, grad_in_proj_weight, grad_in_proj_bias, grad_out_proj_weight, \
grad_out_proj_bias, grad_norm_weight, grad_norm_bias = backward_func(
ctx.config.layer_id, grad_output, output, input, input_mask, in_proj_weight,
in_proj_bias, out_proj_weight, out_proj_bias, norm_weight, norm_bias)
return (grad_input, None, grad_in_proj_weight, grad_in_proj_bias, grad_out_proj_weight, grad_out_proj_bias,
grad_norm_weight, grad_norm_bias, None)
class MultiHeadAttention(nn.Module):
"""Initialize the MultiHeadAttention.
Static variable:
layer_id: The layer-index counter starting from 0 and incrementing by 1 every time a layer object is instantiated,
e.g. if a model has 24 transformer layers, layer_id goes from 0 to 23.
Arguments:
hidden_size: Total dimension of hidden_size.
nhead: Number of parallel attention heads.
batch_size: Batch Size for one foward
max_seq_len: Max length of input sequence
dropout: Dropout probability
norm_first: perform LayerNorms before attention
"""
layer_id = 0
def __init__(self, hidden_size, nhead, batch_size, max_seq_len, dropout=0.0, norm_first=False, fp16=True, pg=None):
super(MultiHeadAttention, self).__init__()
self.config = Config(batch_size * max_seq_len, max_seq_len, hidden_size, nhead, dropout, dropout, norm_first,
fp16)
check_config(self.config)
self.pg = pg
self.pg_size = 1
if self.pg:
self.pg_size = pg.size()
self.config.layer_id = MultiHeadAttention.layer_id
MultiHeadAttention.layer_id = MultiHeadAttention.layer_id + 1
# Load cuda modules if needed
global colossal_multihead_attention
if colossal_multihead_attention is None:
from colossalai.kernel import multihead_attention
colossal_multihead_attention = multihead_attention
# create the layer in cuda kernels.
cuda_module = colossal_multihead_attention
create_layer_func = (cuda_module.create_multihead_attention_fp16
if self.config.fp16 else cuda_module.create_multihead_attention_fp32)
create_layer_func(
self.config.layer_id,
self.config.max_batch_tokens,
self.config.max_seq_len,
self.config.hidden_size,
self.config.nhead,
self.config.attn_prob_dropout_ratio,
self.config.hidden_dropout_ratio,
self.config.norm_first,
self.pg,
)
hs = self.config.hidden_size
self.precision = torch.float32
if self.config.fp16:
self.precision = torch.half
self.hs_per_rank = int(hs / self.pg_size)
self.in_proj_weight = nn.Parameter(torch.Tensor(3, self.hs_per_rank, hs))
self.in_proj_bias = nn.Parameter(torch.Tensor(3, self.hs_per_rank))
self.out_proj_weight = nn.Parameter(torch.Tensor(hs, self.hs_per_rank))
self.out_proj_bias = nn.Parameter(torch.Tensor(hs))
self.norm_weight = nn.Parameter(torch.Tensor(hs))
self.norm_bias = nn.Parameter(torch.Tensor(hs))
self.reset_parameters()
torch.cuda.empty_cache()
def calc_bound(self, w):
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(w)
bound = 1.0 / math.sqrt(fan_in)
return bound
def reset_parameters(self):
hs = self.config.hidden_size
nn.init.zeros_(self.out_proj_bias)
nn.init.ones_(self.norm_weight)
nn.init.zeros_(self.norm_bias)
if self.pg_size > 1:
rank_in_pg = torch.distributed.get_rank(self.pg)
attn_qkvw_global = torch.empty(hs * 3, hs)
attn_qkvb_global = torch.empty(hs * 3)
nn.init.xavier_uniform_(attn_qkvw_global, 1.0 / math.sqrt(2.0))
bound = self.calc_bound(attn_qkvw_global)
nn.init.uniform_(attn_qkvb_global, -bound, bound)
attn_qkvw_global = attn_qkvw_global.cuda()
attn_qkvb_global = attn_qkvb_global.cuda()
torch.distributed.broadcast(attn_qkvw_global, src=0, group=self.pg)
torch.distributed.broadcast(attn_qkvb_global, src=0, group=self.pg)
attn_qkvw_global = attn_qkvw_global.cpu()
attn_qkvb_global = attn_qkvb_global.cpu()
with torch.no_grad():
self.in_proj_weight.copy_(
attn_qkvw_global.view(3, hs, hs)[:,
int(hs * rank_in_pg / self.pg_size):int(hs * (rank_in_pg + 1) /
self.pg_size), :])
self.in_proj_bias.copy_(
attn_qkvb_global.view(3, hs)[:,
int(hs * rank_in_pg / self.pg_size):int(hs * (rank_in_pg + 1) /
self.pg_size)])
attn_ow_global = torch.empty(hs, hs)
nn.init.xavier_uniform_(attn_ow_global, 1.0)
attn_ow_global = attn_ow_global.cuda()
torch.distributed.broadcast(attn_ow_global, src=0, group=self.pg)
attn_ow_global = attn_ow_global.cpu()
with torch.no_grad():
self.out_proj_weight.copy_(attn_ow_global[:,
int(hs * rank_in_pg /
self.pg_size):int(hs * (rank_in_pg + 1) / self.pg_size)])
else:
attn_qkvw = self.in_proj_weight.view(-1, hs)
nn.init.xavier_uniform_(attn_qkvw, 1.0 / math.sqrt(2.0))
bound = self.calc_bound(attn_qkvw)
nn.init.uniform_(self.in_proj_bias, -bound, bound)
nn.init.xavier_uniform_(self.out_proj_weight, 1.0)
def state_dict(self, destination=None, prefix="", keep_vars=False):
destination = torch.nn.Module.state_dict(self, destination=destination, prefix=prefix, keep_vars=keep_vars)
return destination
def forward(self, hidden_states, encoder_padding_mask):
self.config.training = self.training
self.config.is_grad_enabled = torch.is_grad_enabled()
hidden_states = hidden_states.contiguous()
encoder_padding_mask = ((encoder_padding_mask * -1e8).type_as(hidden_states).contiguous())
bs, sl, dim = hidden_states.size()
if bs * sl > self.config.max_batch_tokens:
raise ValueError(f"Batch token numbers {bs * sl} exceeds the limit {self.config.max_batch_tokens}.")
if sl > self.config.max_seq_len:
raise ValueError(f"Sequence length {sl} exceeds the limit {self.config.max_seq_len}.")
if len(encoder_padding_mask.size()) == 1:
assert bs == 1 and sl == encoder_padding_mask.size(0)
else:
assert bs == encoder_padding_mask.size(0) and sl == encoder_padding_mask.size(1)
output = MultiHeadAttention1DFunc.apply(hidden_states, encoder_padding_mask, self.in_proj_weight,
self.in_proj_bias, self.out_proj_weight, self.out_proj_bias,
self.norm_weight, self.norm_bias, self.config)
return output.to(self.precision)