ColossalAI/colossalai/kernel/cuda_native/csrc/kernels/cublas_wrappers.cu

88 lines
3.6 KiB
Plaintext

/* Copyright 2021 The LightSeq Team
Copyright Microsoft DeepSpeed
This file is adapted from Microsoft DeepSpeed
*/
#include "cublas_wrappers.h"
int cublas_gemm_ex(cublasHandle_t handle, cublasOperation_t transa,
cublasOperation_t transb, int m, int n, int k,
const float *alpha, const float *beta, const float *A,
const float *B, float *C, cublasGemmAlgo_t algo) {
cublasStatus_t status =
cublasGemmEx(handle, transa, transb, m, n, k, (const void *)alpha,
(const void *)A, CUDA_R_32F, (transa == CUBLAS_OP_N) ? m : k,
(const void *)B, CUDA_R_32F, (transb == CUBLAS_OP_N) ? k : n,
(const void *)beta, C, CUDA_R_32F, m, CUDA_R_32F, algo);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr,
"!!!! kernel execution error. (m: %d, n: %d, k: %d, error: %d) \n",
m, n, k, (int)status);
return EXIT_FAILURE;
}
return 0;
}
int cublas_gemm_ex(cublasHandle_t handle, cublasOperation_t transa,
cublasOperation_t transb, int m, int n, int k,
const float *alpha, const float *beta, const __half *A,
const __half *B, __half *C, cublasGemmAlgo_t algo) {
cublasStatus_t status = cublasGemmEx(
handle, transa, transb, m, n, k, (const void *)alpha, (const void *)A,
CUDA_R_16F, (transa == CUBLAS_OP_N) ? m : k, (const void *)B, CUDA_R_16F,
(transb == CUBLAS_OP_N) ? k : n, (const void *)beta, (void *)C,
CUDA_R_16F, m, CUDA_R_32F, algo);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr,
"!!!! kernel execution error. (m: %d, n: %d, k: %d, error: %d) \n",
m, n, k, (int)status);
return EXIT_FAILURE;
}
return 0;
}
int cublas_strided_batched_gemm(cublasHandle_t handle, int m, int n, int k,
const float *alpha, const float *beta,
const float *A, const float *B, float *C,
cublasOperation_t op_A, cublasOperation_t op_B,
int stride_A, int stride_B, int stride_C,
int batch, cublasGemmAlgo_t algo) {
cublasStatus_t status = cublasGemmStridedBatchedEx(
handle, op_A, op_B, m, n, k, alpha, A, CUDA_R_32F,
(op_A == CUBLAS_OP_N) ? m : k, stride_A, B, CUDA_R_32F,
(op_B == CUBLAS_OP_N) ? k : n, stride_B, beta, C, CUDA_R_32F, m, stride_C,
batch, CUDA_R_32F, algo);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr,
"!!!! kernel execution error. (batch: %d, m: %d, n: %d, k: %d, "
"error: %d) \n",
batch, m, n, k, (int)status);
return EXIT_FAILURE;
}
return 0;
}
int cublas_strided_batched_gemm(cublasHandle_t handle, int m, int n, int k,
const float *alpha, const float *beta,
const __half *A, const __half *B, __half *C,
cublasOperation_t op_A, cublasOperation_t op_B,
int stride_A, int stride_B, int stride_C,
int batch, cublasGemmAlgo_t algo) {
cublasStatus_t status = cublasGemmStridedBatchedEx(
handle, op_A, op_B, m, n, k, alpha, A, CUDA_R_16F,
(op_A == CUBLAS_OP_N) ? m : k, stride_A, B, CUDA_R_16F,
(op_B == CUBLAS_OP_N) ? k : n, stride_B, beta, C, CUDA_R_16F, m, stride_C,
batch, CUDA_R_32F, algo);
if (status != CUBLAS_STATUS_SUCCESS) {
fprintf(stderr,
"!!!! kernel execution error. (m: %d, n: %d, k: %d, error: %d) \n",
m, n, k, (int)status);
return EXIT_FAILURE;
}
return 0;
}