ColossalAI/applications/ChatGPT/examples/inference.py

53 lines
2.0 KiB
Python

import argparse
import torch
from chatgpt.nn import BLOOMActor, GPTActor, OPTActor
from transformers import AutoTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
def eval(args):
# configure model
if args.model == 'gpt2':
model = GPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
elif args.model == 'bloom':
model = BLOOMActor(pretrained=args.pretrain).to(torch.cuda.current_device())
elif args.model == 'opt':
model = OPTActor(pretrained=args.pretrain).to(torch.cuda.current_device())
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure tokenizer
if args.model == 'gpt2':
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'bloom':
tokenizer = AutoTokenizer.from_pretrained(args.pretrain)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == 'opt':
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
else:
raise ValueError(f'Unsupported model "{args.model}"')
model.eval()
input = args.input
input_ids = tokenizer.encode(input, return_tensors='pt').to(torch.cuda.current_device())
outputs = model.generate(input_ids,
max_length=args.max_length,
do_sample=True,
top_k=50,
top_p=0.95,
num_return_sequences=1)
output = tokenizer.batch_decode(outputs[0], skip_special_tokens=True)
print(output)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--model', default='gpt2', choices=['gpt2', 'bloom', 'opt'])
parser.add_argument('--pretrain', type=str, default=None)
parser.add_argument('--input', type=str, default='Q: How are you ? A:')
parser.add_argument('--max_length', type=int, default=100)
args = parser.parse_args()
eval(args)