You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/zero/sharded_optim/low_level_optim.py

585 lines
24 KiB

from functools import partial
from itertools import groupby
import torch
import torch.distributed as dist
from torch.optim import Optimizer
from colossalai.amp.naive_amp.grad_scaler import DynamicGradScaler
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import ColossalaiOptimizer
from colossalai.utils.cuda import get_current_device
from ._utils import (
calculate_global_norm_from_list,
compute_norm,
flatten,
get_grad_accumulate_object,
has_inf_or_nan,
reduce_tensor,
release_param_grad,
split_half_float_double,
sync_param,
)
from .bookkeeping import BucketStore, GradientStore, ParameterStore, TensorBucket
class LowLevelZeroOptimizer(ColossalaiOptimizer):
"""Optimizer used for ZeRO-1 and ZeRO-2.
"""
def __init__(
self,
optimizer: Optimizer,
# grad scaler config
initial_scale=2**16,
min_scale=1,
growth_factor=2,
backoff_factor=0.5,
growth_interval=2000,
hysteresis=2,
max_scale: int = 2**24,
# grad clipping
clip_grad_norm=0.0,
verbose=False,
# communication
reduce_bucket_size=1024 * 1024,
communication_dtype=None,
overlap_communication=False,
# stage 2
partition_grad=False,
dp_parallel_mode=ParallelMode.DATA,
mp_parallel_mode=ParallelMode.MODEL,
# cpu offload
cpu_offload=False,
# forced dtype
forced_dtype=None):
# TODO: add support for
# 1. fp16 master weights
# 2. contiguous gradients
# 3. cpu offload
# 4. support when some parameters requires_grad = False
super(LowLevelZeroOptimizer, self).__init__(optim=optimizer)
self._dtype = self.optim.param_groups[0]['params'][0].dtype
self._logger = get_dist_logger()
self._verbose = verbose
# stage 2
self._partition_grads = partition_grad
# cpu_offload
self._cpu_offload = cpu_offload
# get process groups
self._dp_parallel_mode = dp_parallel_mode
self._mp_parallel_mode = mp_parallel_mode
self._local_rank = gpc.get_local_rank(dp_parallel_mode)
self._world_size = gpc.get_world_size(dp_parallel_mode)
self._dp_group = gpc.get_group(dp_parallel_mode)
if gpc.is_initialized(mp_parallel_mode) and gpc.get_world_size(mp_parallel_mode) > 1:
self._mp_group = gpc.get_group(mp_parallel_mode)
else:
self._mp_group = None
# fp16 and fp32 params for mixed precision training
self._fp16_param_groups = dict()
self._fp32_flat_param_groups_of_current_rank = dict()
# communication params
self._overlap_communication = overlap_communication
self._reduce_bucket_size = reduce_bucket_size
self._communication_dtype = communication_dtype
# gradient scaler
self.grad_scaler = DynamicGradScaler(initial_scale=initial_scale,
min_scale=min_scale,
growth_factor=growth_factor,
backoff_factor=backoff_factor,
growth_interval=growth_interval,
hysteresis=hysteresis,
max_scale=max_scale,
verbose=verbose)
self._found_overflow = torch.FloatTensor([0]).to(get_current_device())
# gradient clipping
self._clip_grad_norm = clip_grad_norm
if forced_dtype:
for group in self.optim.param_groups:
group_params = group['params']
for param in group_params:
param.data = param.data.to(forced_dtype)
self._dtype = forced_dtype
# check argument conflict
self._sanity_checks()
# ParameterStore will manage the tensor buffers used for zero
# it will not manage the tensors used by mixed precision training
self._param_store = ParameterStore(self._dp_parallel_mode)
self._grad_store = GradientStore(self._dp_parallel_mode)
self._bucket_store = BucketStore(self._dp_parallel_mode)
# iterate over the param group in the optimizer
# partition these param groups for data parallel training
# and add buffers to parameter store for future access
for group_id, param_group in enumerate(self.optim.param_groups):
group_params = param_group['params']
# add the fp16 params to fp16_param_groups for bookkeeping
self._fp16_param_groups[group_id] = group_params
# assign parameters to ranks
# the params in the list are sorted
params_per_rank = self._partition_param_list(group_params)
# store the mapping between param to rank
# each param should belong to only one rank
for rank, params in enumerate(params_per_rank):
self._param_store.add_fp16_param_list_by_rank_group(rank, group_id, params)
for param in params:
self._param_store.set_param_to_rank(param, rank)
# move to cpu to make room to create the flat tensor
# move_tensor(params, device='cpu')
for param in group_params:
param.data = param.data.cpu()
# flatten the reordered tensors
for rank in range(self._world_size):
tensor_list = self._param_store.get_fp16_params_by_rank_group(rank, group_id)
with torch.no_grad():
flat_tensor = flatten(tensor_list)
flat_tensor = flat_tensor.data.cuda()
self._param_store.add_flat_fp16_param_by_rank_group(rank, group_id, flat_tensor)
# sync parameters
for rank in range(self._world_size):
flat_tensor = self._param_store.get_flat_fp16_param_by_rank_group(rank, group_id)
tensor_list = self._param_store.get_fp16_params_by_rank_group(rank, group_id)
sync_param(flat_tensor=flat_tensor, tensor_list=tensor_list)
# create a copy of fp32 weights of the parameters for which this rank is responsible
fp16_flat_current_rank = self._param_store.get_flat_fp16_param_by_rank_group(self._local_rank, group_id)
fp32_flat_current_rank = fp16_flat_current_rank.float()
device = 'cpu' if self._cpu_offload else get_current_device()
fp32_flat_current_rank = fp32_flat_current_rank.to(device)
fp32_flat_current_rank.requires_grad = True
self._fp32_flat_param_groups_of_current_rank[group_id] = fp32_flat_current_rank
# need to replace the params in the `params` field in the optimizer
# so that when the optimizer calls step(), it only updates the tensors
# managed by this data parallel rank
param_group['params'] = [fp32_flat_current_rank]
# set reduction state
for param in self._fp16_param_groups[group_id]:
self._param_store.set_param_reduction_state(param, False)
# intialize communication stream for
# communication-compuation overlapping
if self._overlap_communication:
self._comm_stream = torch.cuda.Stream()
# reduction hook is only used if overlapping communication
# or stage 2 is used
# if it is stage 1 without overlapping, no hook will be attached
if self._overlap_communication or self._partition_grads:
self._attach_reduction_hook()
@property
def dtype(self):
return self._dtype
@property
def loss_scale(self):
return self.grad_scaler.scale
@property
def num_param_groups(self):
return len(self._fp16_param_groups)
def _partition_param_list(self, param_list):
params_per_rank = [[] for _ in range(self._world_size)]
numel_per_rank = [0 for _ in range(self._world_size)]
# partititon the parameters in a greedy fashion
sorted_params = sorted(param_list, key=lambda x: x.numel(), reverse=True)
for param in sorted_params:
# allocate this parameter to the rank with
# the smallest numel for load balancing purpose
rank_to_go = numel_per_rank.index(min(numel_per_rank))
params_per_rank[rank_to_go].append(param)
numel_per_rank[rank_to_go] += param.numel()
if self._verbose:
self._logger.info(f'Number of elements on ranks: {numel_per_rank}',
ranks=[0],
parallel_mode=self._dp_parallel_mode)
return params_per_rank
def _sanity_checks(self):
assert torch.cuda.is_available(), 'CUDA is required'
for param_group in self.optim.param_groups:
group_params = param_group['params']
for param in group_params:
assert param.dtype == self._dtype, \
f"Parameters are expected to have the same dtype `{self._dtype}`, but got `{param.dtype}`"
###########################################################
# Backward Reduction Hook
###########################################################
def _attach_reduction_hook(self):
# we iterate over the fp16 params
# on each param, we register a hook to its AccumulateGrad object
for group_id in range(self.num_param_groups):
param_group = self._fp16_param_groups[group_id]
for param in param_group:
if param.requires_grad:
# determines the reduction destionation rank
# this is only valid for stage 2
# dst_rank = None means using all-reduce
# else using reduce
if self._partition_grads:
reduce_rank = self._param_store.get_param_rank(param)
else:
reduce_rank = None
def _define_and_attach(param, reduce_rank):
# get the AccumulateGrad object of the param itself
accum_grad_obj = get_grad_accumulate_object(param)
self._grad_store.add_accumulate_grad_object(accum_grad_obj)
reduction_func = partial(self._reduce_and_remove_grads_by_bucket,
param=param,
reduce_rank=reduce_rank)
# define hook
# NOT IMPORTANT BUT GOOD TO KNOW:
# args here is not grad, but allow_unreacable and accumulate_grad
def reduce_grad_hook(*args):
reduction_func()
accum_grad_obj.register_hook(reduce_grad_hook)
_define_and_attach(param, reduce_rank)
def _reduce_and_remove_grads_by_bucket(self, param, reduce_rank=None):
param_size = param.numel()
# check if the bucket is full
# if full, will reduce the grads already in the bucket
# after reduction, the bucket will be empty
if self._bucket_store.num_elements_in_bucket(reduce_rank) + param_size > self._reduce_bucket_size:
self._reduce_grads_in_bucket(reduce_rank)
# the param must not be reduced to ensure correctness
is_param_reduced = self._param_store.is_param_reduced(param)
if is_param_reduced:
msg = f'Parameter of size ({param.size()}) has already been reduced, ' \
+ 'duplicate reduction will lead to arithmetic incorrectness'
raise RuntimeError(msg)
# the param must have grad for reduction
assert param.grad is not None, f'Parameter of size ({param.size()}) has None grad, cannot be reduced'
self._bucket_store.add_num_elements_in_bucket(param_size, reduce_rank)
self._bucket_store.add_grad(param.grad, reduce_rank)
self._bucket_store.add_param(param, reduce_rank)
def _reduce_grads_in_bucket(self, reduce_rank=None):
# reduce grads
self._reduce_grads_by_rank(reduce_rank=reduce_rank,
grads=self._bucket_store.get_grad(reduce_rank=reduce_rank),
bucket_size=self._bucket_store.num_elements_in_bucket(reduce_rank))
# use communication stream if overlapping
# communication with computation
if self._overlap_communication:
stream = self._comm_stream
else:
stream = torch.cuda.current_stream()
with torch.cuda.stream(stream):
params_in_bucket = self._bucket_store.get_param(reduce_rank=reduce_rank)
for param in params_in_bucket:
# the is_param_reduced flag should be False showing that
# this param is not reduced before calling self._reduce_grads_by_rank
is_param_reduced = self._param_store.is_param_reduced(param)
if is_param_reduced:
msg = f'Parameter of size ({param.size()}) has been reduced, ' + \
'duplicate reduction will lead to arithmetic incorrectness'
raise RuntimeError(msg)
# update the flag
self._param_store.set_param_reduction_state(param, True)
# if partition grads = True
# we do not keep the gradient after reduction
if self._partition_grads and not self._param_store.belongs_to_current_rank(param):
if self._overlap_communication:
# we need to keep this gradient for now as reduction may
# be completed yet since it is using a different cuda stream
self._param_store.add_previous_reduced_param(param)
else:
param.grad = None
self._bucket_store.reset_by_rank(reduce_rank)
def _reduce_grads_by_rank(self, reduce_rank, grads, bucket_size):
grad_buckets_by_dtype = split_half_float_double(grads)
for tensor_list in grad_buckets_by_dtype:
self._reduce_no_retain(tensor_list=tensor_list, bucket_size=bucket_size, reduce_rank=reduce_rank)
##############################
# Reduction Utility Function #
##############################
def _reduce_no_retain(self, tensor_list, bucket_size, reduce_rank):
param_bucket = TensorBucket(size=bucket_size)
for tensor in tensor_list:
param_bucket.add_to_bucket(tensor, allow_oversize=True)
if param_bucket.is_full_or_oversized():
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
param_bucket.empty()
if not param_bucket.is_empty():
self._reduce_and_copy(bucket=param_bucket, reduce_rank=reduce_rank)
def _reduce_and_copy(self, bucket: TensorBucket, reduce_rank):
if self._overlap_communication:
torch.cuda.synchronize()
self._param_store.clear_grads_of_previous_reduced_params()
stream = self._comm_stream
else:
stream = torch.cuda.current_stream()
with torch.cuda.stream(stream):
flat = bucket.flatten()
reduced_flat = reduce_tensor(tensor=flat,
dtype=self._communication_dtype,
dst_rank=reduce_rank,
parallel_mode=self._dp_parallel_mode)
# update the reduced tensor
if reduce_rank is None or reduce_rank == self._local_rank:
bucket.unflatten_and_copy(reduced_flat)
################################
# torch.optim.Optimizer methods
################################
def backward(self, loss, retain_graph=False):
loss = self.loss_scale * loss
loss.backward(retain_graph=retain_graph)
# finish gradient reduction
if not self._partition_grads:
self._reduce_grad_stage1()
else:
# TODO: support async comm in reduce
self._reduce_grad_stage2()
# clear reduced grads
if self._overlap_communication:
torch.cuda.synchronize()
self._param_store.clear_grads_of_previous_reduced_params()
def zero_grad(self, set_to_none=True):
"""
Set parameter gradients to zero. If set_to_none = True, gradient
will be set to None to save memory.
:param set_to_none: Whether set the gradient to None. Default value is True.
:type set_to_none: bool
"""
for group_id, param_group in self._fp16_param_groups.items():
for param in param_group:
if set_to_none:
param.grad = None
else:
if param.grad is not None:
param.grad.detach()
param.grad.zero_()
####################
# Update Parameter #
####################
def step(self, closure=None):
assert closure is None, 'closure is not supported by step()'
# check for overflow
found_inf = self._check_overflow()
self.grad_scaler.update(found_inf)
# update loss scale if overflow occurs
if found_inf:
self._grad_store._averaged_gradients = dict()
self.zero_grad()
return
# copy the grad of fp16 param to fp32 param
single_grad_partition_groups = []
norm_groups = []
for group_id in range(self.num_param_groups):
# compute norm
norm_group = compute_norm(gradients=self._grad_store._averaged_gradients[group_id],
params=self._param_store.get_fp16_params_by_rank_group(group_id=group_id,
rank=self._local_rank),
dp_group=self._dp_group,
mp_group=self._mp_group)
norm_groups.append(norm_group)
# create flat gradient for the flat fp32 params
fp16_avg_grads = self._grad_store.get_averaged_gradients_by_group(group_id)
flat_fp16_avg_grads = flatten(fp16_avg_grads)
dtype = self._fp32_flat_param_groups_of_current_rank[group_id].dtype
flat_fp32_avg_grads = flat_fp16_avg_grads.to(dtype)
param_shape = self._fp32_flat_param_groups_of_current_rank[group_id].shape
assert param_shape == flat_fp32_avg_grads.shape, \
f'fp32 param and grad have different shape {param_shape} vs {flat_fp32_avg_grads.shape}'
single_grad_partition_groups.append(flat_fp32_avg_grads)
device = self._fp32_flat_param_groups_of_current_rank[group_id].device
self._fp32_flat_param_groups_of_current_rank[group_id].grad = flat_fp32_avg_grads.to(device)
self._grad_store._averaged_gradients[group_id] = []
self._grad_store._averaged_gradients[group_id] = []
# unscale and clip grads
global_norm = calculate_global_norm_from_list(norm_list=norm_groups)
self._unscale_and_clip_grads(single_grad_partition_groups, global_norm)
# update the parameters
self.optim.step()
# release the fp32 grad
release_param_grad(self._fp32_flat_param_groups_of_current_rank.values())
# update fp16 partition updated by the current rank
for group_id in range(len(self._fp16_param_groups)):
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=self._local_rank, group_id=group_id)
fp32_param = self._fp32_flat_param_groups_of_current_rank[group_id]
fp16_param.data.copy_(fp32_param)
# broadcast the updated model weights
handles = []
for group_id in range(self.num_param_groups):
for rank in range(self._world_size):
fp16_param = self._param_store.get_flat_fp16_param_by_rank_group(rank=rank, group_id=group_id)
handle = dist.broadcast(fp16_param, src=rank, group=self._dp_group, async_op=True)
handles.append(handle)
for handle in handles:
handle.wait()
##################
# FP16 Utilities #
##################
def _check_overflow(self):
# clear previous overflow record
self._found_overflow.fill_(0.0)
# check for overflow
for group_id in range(len(self._fp16_param_groups)):
for avg_grad in self._grad_store.get_averaged_gradients_by_group(group_id):
if avg_grad is not None and has_inf_or_nan(avg_grad):
self._found_overflow.fill_(1.0)
break
# all-reduce across dp group
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._dp_group)
# all-reduce over model parallel group
if self._mp_group:
dist.all_reduce(self._found_overflow, op=dist.ReduceOp.MAX, group=self._mp_group)
if self._found_overflow.item() > 0:
return True
else:
return False
def _unscale_and_clip_grads(self, grad_groups_flat, total_norm):
# compute combined scale factor for this group
combined_scale = self.loss_scale
if self._clip_grad_norm > 0.:
# norm is in fact norm*scale
clip = ((total_norm / self.loss_scale) + 1e-6) / self._clip_grad_norm
if clip > 1:
combined_scale = clip * self.loss_scale
for grad in grad_groups_flat:
grad.data.mul_(1. / combined_scale)
############################
# Gradient Synchronization #
############################
def sync_grad(self):
# update param already reduced flag
reduction_states = self._param_store.get_param_reduction_states()
for tensor, state in reduction_states.items():
reduction_states[tensor] = False
# accumulate gradient
avg_gradients = self._grad_store._averaged_gradients
for group_id in range(self.num_param_groups):
param_group = self._param_store.get_fp16_params_by_rank_group(self._local_rank, group_id)
if group_id not in avg_gradients:
avg_gradients[group_id] = []
param_idx = 0
for param in param_group:
if param.grad is not None:
if len(avg_gradients[group_id]) == param_idx:
avg_gradients[group_id].append(param.grad)
else:
avg_gradients[group_id][param_idx].add_(param.grad)
param_idx += 1
# the gradients needed are stored in the avg_gradients buffer
# thus, can clear this
self.zero_grad()
def _reduce_grad_stage1(self):
# if not overlapping communication (no reduction hook is attached)
# we need to manually reduce these gradients
if not self._overlap_communication:
for group_id in range(len(self._fp16_param_groups)):
param_group = self._fp16_param_groups[group_id]
for param in param_group:
if param.grad is not None:
self._reduce_and_remove_grads_by_bucket(param)
# we need to reduce the gradients
# left in the communication bucket
self._reduce_grads_in_bucket()
def _reduce_grad_stage2(self):
# when partition_grads is True, reduction hooks
# are attached in the __init__ function, so we
# only need to reduce the gradients
# left in the communication bucket
for reduce_rank in range(self._world_size):
self._reduce_grads_in_bucket(reduce_rank)