ColossalAI/tests/test_autochunk/openfold/dropout.py

79 lines
2.2 KiB
Python

# Copyright 2021 AlQuraishi Laboratory
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn as nn
from functools import partialmethod
from typing import Union, List
class Dropout(nn.Module):
"""
Implementation of dropout with the ability to share the dropout mask
along a particular dimension.
If not in training mode, this module computes the identity function.
"""
def __init__(self, r: float, batch_dim: Union[int, List[int]]):
"""
Args:
r:
Dropout rate
batch_dim:
Dimension(s) along which the dropout mask is shared
"""
super(Dropout, self).__init__()
self.r = r
if type(batch_dim) == int:
batch_dim = [batch_dim]
self.batch_dim = batch_dim
self.dropout = nn.Dropout(self.r)
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""
Args:
x:
Tensor to which dropout is applied. Can have any shape
compatible with self.batch_dim
"""
shape = list(x.shape)
if self.batch_dim is not None:
for bd in self.batch_dim:
shape[bd] = 1
mask = x.new_ones(shape)
mask = self.dropout(mask)
x *= mask
return x
class DropoutRowwise(Dropout):
"""
Convenience class for rowwise dropout as described in subsection
1.11.6.
"""
__init__ = partialmethod(Dropout.__init__, batch_dim=-3)
class DropoutColumnwise(Dropout):
"""
Convenience class for columnwise dropout as described in subsection
1.11.6.
"""
__init__ = partialmethod(Dropout.__init__, batch_dim=-2)