mirror of https://github.com/hpcaitech/ColossalAI
60 lines
2.1 KiB
Python
60 lines
2.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import pytest
|
|
import colossalai
|
|
from colossalai.fx import ColoTracer
|
|
from colossalai.fx.passes.shard_1d_pass import transform_mlp_pass
|
|
CONFIG = dict(parallel=dict(tensor=dict(size=2, mode='1d')))
|
|
|
|
class MLP(torch.nn.Module):
|
|
|
|
def __init__(self, dim: int):
|
|
super().__init__()
|
|
self.linear1 = torch.nn.Linear(dim, dim)
|
|
self.linear2 = torch.nn.Linear(dim, dim)
|
|
self.linear3 = torch.nn.Linear(dim, dim)
|
|
self.linear4 = torch.nn.Linear(dim, dim)
|
|
self.dropout = torch.nn.Dropout()
|
|
self.relu = torch.nn.ReLU()
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.linear1(x))
|
|
x = self.dropout(self.relu(self.linear2(x)))
|
|
x = self.linear3(x)
|
|
x = torch.nn.functional.relu(self.linear4(x))
|
|
return x
|
|
|
|
def test_out_acc():
|
|
model = MLP(16).cuda()
|
|
model.eval()
|
|
input_tensor = torch.rand(2, 16).cuda()
|
|
output = model(input_tensor)
|
|
tracer = ColoTracer()
|
|
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
|
|
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
|
splitted_gm = transform_mlp_pass(gm)
|
|
new_output = splitted_gm(input_tensor)
|
|
assert output.equal(new_output)
|
|
|
|
def test_linear_acc():
|
|
input_tensor = torch.rand(2, 16).cuda()
|
|
model = MLP(16).cuda()
|
|
tracer = ColoTracer()
|
|
graph = tracer.trace(model, meta_args={'x': torch.randn((2, 16), device="meta")})
|
|
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
|
|
splitted_gm = transform_mlp_pass(gm)
|
|
col_shard = True
|
|
for node in splitted_gm.graph.nodes:
|
|
if node.op == "call_module" and isinstance(node.graph.owning_module.get_submodule(node.target), torch.nn.Linear):
|
|
target_module = node.graph.owning_module.get_submodule(node.target)
|
|
dim = 0 if col_shard else -1
|
|
assert target_module.weight.fx_attr == (dim, "SHARD", "TP", "col_needs_many_outputs")
|
|
col_shard = not col_shard
|
|
|
|
if __name__ == "__main__":
|
|
torch.manual_seed(1)
|
|
torch.cuda.manual_seed(1)
|
|
# colossalai.launch_from_torch(config=CONFIG)
|
|
test_out_acc()
|
|
test_linear_acc()
|