mirror of https://github.com/hpcaitech/ColossalAI
362 lines
16 KiB
Python
362 lines
16 KiB
Python
from typing import List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
|
from transformers.models.llama.modeling_llama import LlamaAttention, LlamaDecoderLayer, LlamaModel, LlamaRMSNorm
|
|
|
|
from colossalai.inference.tensor_parallel.batch_infer_state import BatchInferState
|
|
from colossalai.kernel.triton import (
|
|
copy_kv_cache_to_dest,
|
|
llama_context_attn_fwd,
|
|
rotary_embedding_fwd,
|
|
token_attention_fwd,
|
|
)
|
|
|
|
try:
|
|
from vllm import layernorm_ops, pos_encoding_ops
|
|
rms_norm = layernorm_ops.rms_norm
|
|
rotary_embedding_neox = pos_encoding_ops.rotary_embedding_neox
|
|
HAS_VLLM_KERNERL = True
|
|
except:
|
|
print("fall back to original rotary_embedding_neox of huggingface")
|
|
print("install vllm from https://github.com/vllm-project/vllm to accelerate your inference")
|
|
print(
|
|
"if falied to install vllm, please use this branch to install: https://github.com/tiandiao123/vllm/tree/setup_branch"
|
|
)
|
|
HAS_VLLM_KERNERL = False
|
|
|
|
|
|
def rotate_half(x):
|
|
"""Rotates half the hidden dims of the input."""
|
|
x1 = x[..., :x.shape[-1] // 2]
|
|
x2 = x[..., x.shape[-1] // 2:]
|
|
return torch.cat((-x2, x1), dim=-1)
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
|
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
|
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
|
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
|
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
|
|
|
q_embed = (q * cos) + (rotate_half(q) * sin)
|
|
k_embed = (k * cos) + (rotate_half(k) * sin)
|
|
return q_embed, k_embed
|
|
|
|
|
|
def _copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager):
|
|
copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id])
|
|
copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id])
|
|
return
|
|
|
|
|
|
class LlamaInferenceForwards:
|
|
"""
|
|
This class holds forwards for llama inference.
|
|
We intend to replace the forward methods for LlamaModel, LlamaDecoderLayer, and LlamaAttention for LlamaForCausalLM.
|
|
"""
|
|
|
|
@staticmethod
|
|
def llama_model_forward(
|
|
self: LlamaModel,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
):
|
|
|
|
batch_size = input_ids.shape[0] # input_ids.shape[0]
|
|
|
|
infer_state = self.infer_state
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
if past_key_values is not None:
|
|
# NOT READY FOR PRIME TIME
|
|
# dummy but work, revise it
|
|
past_key_values_length = infer_state.cache_manager.past_key_values_length
|
|
# past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
# NOTE: differentiate with prefill stage
|
|
# block_loc require different value-assigning method for two different stage
|
|
if use_cache and seq_length != 1:
|
|
# NOTE assuem prefill stage
|
|
# allocate memory block
|
|
infer_state.is_context_stage = True # set prefill stage, notify attention layer
|
|
infer_state.context_mem_index = infer_state.cache_manager.alloc(infer_state.total_token_num)
|
|
infer_state.init_block_loc(infer_state.block_loc, infer_state.seq_len, seq_length,
|
|
infer_state.context_mem_index)
|
|
else:
|
|
infer_state.is_context_stage = False
|
|
alloc_mem = infer_state.cache_manager.alloc_contiguous(batch_size)
|
|
if alloc_mem is not None:
|
|
infer_state.decode_is_contiguous = True
|
|
infer_state.decode_mem_index = alloc_mem[0]
|
|
infer_state.decode_mem_start = alloc_mem[1]
|
|
infer_state.decode_mem_end = alloc_mem[2]
|
|
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
|
|
else:
|
|
print(f" *** Encountered allocation non-contiguous")
|
|
print(
|
|
f" infer_state.cache_manager.past_key_values_length: {infer_state.cache_manager.past_key_values_length}"
|
|
)
|
|
infer_state.decode_is_contiguous = False
|
|
alloc_mem = infer_state.cache_manager.alloc(batch_size)
|
|
infer_state.decode_mem_index = alloc_mem
|
|
# infer_state.decode_key_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
|
# infer_state.decode_value_buffer = torch.empty((batch_size, self.tp_head_num_, self.head_dim_), dtype=torch.float16, device="cuda")
|
|
infer_state.block_loc[:, seq_length_with_past - 1] = infer_state.decode_mem_index
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(past_key_values_length,
|
|
seq_length + past_key_values_length,
|
|
dtype=torch.long,
|
|
device=device)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
if infer_state.is_context_stage:
|
|
|
|
infer_state.position_cos = torch.index_select(self._cos_cached, 0, position_ids.view(-1)).view(
|
|
position_ids.view(-1).shape[0], -1)
|
|
infer_state.position_sin = torch.index_select(self._sin_cached, 0, position_ids.view(-1)).view(
|
|
position_ids.view(-1).shape[0], -1)
|
|
else:
|
|
seq_len = infer_state.seq_len
|
|
infer_state.position_cos = torch.index_select(self._cos_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
|
|
infer_state.position_sin = torch.index_select(self._sin_cached, 0, seq_len - 1).view(seq_len.shape[0], -1)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
# embed positions
|
|
if attention_mask is None:
|
|
attention_mask = torch.ones((batch_size, seq_length_with_past),
|
|
dtype=torch.bool,
|
|
device=inputs_embeds.device)
|
|
|
|
attention_mask = self._prepare_decoder_attention_mask(attention_mask, (batch_size, seq_length), inputs_embeds,
|
|
past_key_values_length)
|
|
|
|
hidden_states = inputs_embeds
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = () if use_cache else None
|
|
|
|
infer_state.decode_layer_id = 0
|
|
|
|
for idx, decoder_layer in enumerate(self.layers):
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
# NOTE: modify here for passing args to decoder layer
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
infer_state=infer_state,
|
|
)
|
|
infer_state.decode_layer_id += 1
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
# update indices
|
|
# infer_state.block_loc[:, infer_state.max_len_in_batch-1] = infer_state.total_token_num + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
|
infer_state.start_loc = infer_state.start_loc + torch.arange(0, batch_size, dtype=torch.int32, device="cuda")
|
|
infer_state.seq_len += 1
|
|
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
@staticmethod
|
|
def llama_decoder_layer_forward(
|
|
self: LlamaDecoderLayer,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: Optional[bool] = False,
|
|
use_cache: Optional[bool] = False,
|
|
infer_state: Optional[BatchInferState] = None,
|
|
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
|
|
|
residual = hidden_states
|
|
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
|
|
# Self Attention
|
|
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
|
hidden_states=hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_value,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
infer_state=infer_state,
|
|
)
|
|
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
|
|
outputs = (hidden_states,)
|
|
|
|
if output_attentions:
|
|
outputs += (self_attn_weights,)
|
|
|
|
if use_cache:
|
|
outputs += (present_key_value,)
|
|
|
|
return outputs
|
|
|
|
@staticmethod
|
|
def llama_flash_attn_kvcache_forward(
|
|
self: LlamaAttention,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
infer_state: Optional[BatchInferState] = None,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
assert use_cache is True, "use_cache should be set to True using this llama attention"
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
# NOTE might think about better way to handle transposed k and v
|
|
# key_states [bs, seq_len, num_heads, head_dim/embed_size_per_head]
|
|
# key_states_transposed [bs, num_heads, seq_len, head_dim/embed_size_per_head]
|
|
|
|
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
|
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
|
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
|
|
|
# NOTE might want to revise
|
|
# need some way to record the length of past key values cache
|
|
# since we won't return past_key_value_cache right now
|
|
if infer_state.decode_layer_id == 0: # once per model.forward
|
|
infer_state.cache_manager.past_key_values_length += q_len # seq_len
|
|
|
|
cos, sin = infer_state.position_cos, infer_state.position_sin
|
|
# print("shape ", cos.shape, query_states.view(-1, self.num_heads, self.head_dim).shape, )
|
|
|
|
rotary_embedding_fwd(query_states.view(-1, self.num_heads, self.head_dim), cos, sin)
|
|
rotary_embedding_fwd(key_states.view(-1, self.num_heads, self.head_dim), cos, sin)
|
|
|
|
def _copy_kv_to_mem_cache(layer_id, key_buffer, value_buffer, context_mem_index, mem_manager):
|
|
copy_kv_cache_to_dest(key_buffer, context_mem_index, mem_manager.key_buffer[layer_id])
|
|
copy_kv_cache_to_dest(value_buffer, context_mem_index, mem_manager.value_buffer[layer_id])
|
|
return
|
|
|
|
query_states = query_states.reshape(-1, self.num_heads, self.head_dim)
|
|
key_states = key_states.reshape(-1, self.num_heads, self.head_dim)
|
|
value_states = value_states.reshape(-1, self.num_heads, self.head_dim)
|
|
|
|
if infer_state.is_context_stage:
|
|
# first token generation
|
|
|
|
# copy key and value calculated in current step to memory manager
|
|
_copy_kv_to_mem_cache(infer_state.decode_layer_id, key_states, value_states, infer_state.context_mem_index,
|
|
infer_state.cache_manager)
|
|
|
|
attn_output = torch.empty_like(query_states)
|
|
|
|
llama_context_attn_fwd(query_states, key_states, value_states, attn_output, infer_state.start_loc,
|
|
infer_state.seq_len, infer_state.cache_manager.past_key_values_length)
|
|
else:
|
|
|
|
if infer_state.decode_is_contiguous:
|
|
# if decode is contiguous, then we copy to key cache and value cache in cache manager directly
|
|
cache_k = infer_state.cache_manager.key_buffer[infer_state.decode_layer_id][
|
|
infer_state.decode_mem_start:infer_state.decode_mem_end, :, :]
|
|
cache_v = infer_state.cache_manager.value_buffer[infer_state.decode_layer_id][
|
|
infer_state.decode_mem_start:infer_state.decode_mem_end, :, :]
|
|
cache_k.copy_(key_states)
|
|
cache_v.copy_(value_states)
|
|
else:
|
|
# if decode is not contiguous, use triton kernel to copy key and value cache
|
|
# k, v shape: [batch_size, num_heads, head_dim/embed_size_per_head
|
|
_copy_kv_to_mem_cache(infer_state.decode_layer_id, key_states, value_states,
|
|
infer_state.decode_mem_index, infer_state.cache_manager)
|
|
|
|
# second token and follows
|
|
# kv = torch.stack((key_states, value_states), dim=2)
|
|
# (batch_size, seqlen, nheads, headdim)
|
|
attn_output = torch.empty_like(query_states)
|
|
|
|
token_attention_fwd(query_states, infer_state.cache_manager.key_buffer[infer_state.decode_layer_id],
|
|
infer_state.cache_manager.value_buffer[infer_state.decode_layer_id], attn_output,
|
|
infer_state.block_loc, infer_state.start_loc, infer_state.seq_len,
|
|
infer_state.cache_manager.past_key_values_length)
|
|
|
|
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
# return past_key_value as None
|
|
return attn_output, None, None
|
|
|
|
|
|
def get_llama_vllm_rmsnorm_forward():
|
|
|
|
if HAS_VLLM_KERNERL:
|
|
|
|
def _vllm_rmsnorm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor):
|
|
x = hidden_states
|
|
out = torch.empty_like(x)
|
|
rms_norm(
|
|
out,
|
|
x,
|
|
self.weight.data,
|
|
self.variance_epsilon,
|
|
)
|
|
|
|
return out
|
|
|
|
return _vllm_rmsnorm_forward
|
|
else:
|
|
return None
|