mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
776 lines
32 KiB
776 lines
32 KiB
#!/usr/bin/env python |
|
# -*- encoding: utf-8 -*- |
|
|
|
import math |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from torch import Tensor |
|
from torch.distributed import ProcessGroup |
|
from torch.nn.parameter import Parameter |
|
|
|
from colossalai.lazy import LazyInitContext |
|
from colossalai.nn import init as init |
|
from colossalai.nn.layer.utils import divide |
|
from colossalai.tensor.d_tensor.api import ( |
|
customized_distributed_tensor_to_existing_param, |
|
distribute_tensor_with_customization, |
|
is_customized_distributed_tensor, |
|
is_distributed_tensor, |
|
shard_rowwise, |
|
sharded_tensor_to_existing_param, |
|
) |
|
|
|
from ._operation import ( |
|
gather_forward_split_backward, |
|
linear_with_async_comm, |
|
matmul_gather_forward_reducescatter_backward, |
|
matmul_with_async_comm, |
|
reduce_backward, |
|
reduce_forward, |
|
reducescatter_forward_gather_backward, |
|
split_forward_gather_backward, |
|
) |
|
from .parallel_module import ParallelModule |
|
from .utils import create_randomizer_with_offset |
|
|
|
__all__ = ["FusedLinear1D_Col", "FusedLinear1D_Row", "GPT2FusedLinearConv1D_Col", "GPT2FusedLinearConv1D_Row"] |
|
|
|
# ==================================== |
|
# For GPT Only |
|
# ==================================== |
|
|
|
|
|
def split_fused_qkv_in_gpt2_style( |
|
qkv: torch.Tensor, n_fused: int, process_group: ProcessGroup, is_transposed: bool = False |
|
): |
|
""" |
|
The fused qkv tensor looks like [Q1, Q2, K1, K2, V1, V2], this function will split them into [Q1, K1, V1] and [Q2, K2, V2]. |
|
|
|
Args: |
|
qkv (torch.Tensor): The fused qkv tensor. |
|
n_fused (int): The number items fused together, defaults to 3 (query, key and value). |
|
process_group (ProcessGroup): The process group for distributed communication. |
|
is_transposed (bool): generally the tensor is the shape of (out_features, in_features). Set this to True if the tensor is in the shape (in_features, out_features). |
|
""" |
|
# get the number of slice for the fused qkv |
|
rank = dist.get_rank(group=process_group) |
|
world_size = dist.get_world_size(group=process_group) |
|
order = torch.arange(world_size * n_fused) |
|
|
|
# split the fused qkv |
|
# from |
|
# [Q, K, V] |
|
# to |
|
# [Q1, Q2, K1, K2, V1, V2] |
|
if is_transposed: |
|
weight_chunks = torch.chunk(qkv, world_size * n_fused, dim=-1) |
|
else: |
|
weight_chunks = torch.chunk(qkv, world_size * n_fused, dim=0) |
|
|
|
# rearrange the slice into the final order |
|
# from |
|
# [Q1, Q2, K1, K2, V1, V2] |
|
# to |
|
# [Q1, K1, V1], [Q2, K2, V2] |
|
weight_chunks_of_current_rank = [weight_chunks[i] for i in order[rank::world_size]] |
|
|
|
if is_transposed: |
|
weight_of_current_rank = torch.cat(weight_chunks_of_current_rank, dim=-1) |
|
else: |
|
weight_of_current_rank = torch.cat(weight_chunks_of_current_rank, dim=0) |
|
return weight_of_current_rank |
|
|
|
|
|
def gather_fused_qkv_in_gpt2_style( |
|
qkv: torch.Tensor, n_fused: int, process_group: ProcessGroup, is_transposed: bool = False |
|
): |
|
""" |
|
The splitted qkv tensor looks like [Q1, K1, V1] and [Q2, K2, V2], this function will gather them into [Q1, Q2, K1, K2, V1, V2]. |
|
|
|
Args: |
|
qkv (torch.Tensor): The fused qkv tensor. |
|
n_fused (int): The number items fused together, defaults to 3 (query, key and value). |
|
process_group (ProcessGroup): The process group for distributed communication. |
|
is_transposed (bool): generally the tensor is the shape of (out_features, in_features). Set this to True if the tensor is in the shape (in_features, out_features). |
|
""" |
|
world_size = dist.get_world_size(group=process_group) |
|
|
|
# gather the tensors |
|
# from |
|
# [Q1, K1, V1], [Q2, K2, V2] |
|
# to |
|
# [Q1, K1, V1, Q2, K2, V2] |
|
origin_device = qkv.device |
|
qkv = qkv.cuda() |
|
gather_list = [torch.zeros_like(qkv) for _ in range(world_size)] |
|
dist.all_gather(gather_list, qkv, group=process_group) |
|
|
|
if is_transposed: |
|
gather_weight = torch.cat(gather_list, dim=-1) |
|
else: |
|
gather_weight = torch.cat(gather_list, dim=0) |
|
gather_weight = gather_weight.to(origin_device) |
|
qkv = qkv.to(origin_device) |
|
|
|
# rearrange the tensor slices |
|
# from |
|
# [Q1, K1, V1, Q2, K2, V2] |
|
# to |
|
# [Q1, Q2, K1, K2, V1, V2] |
|
if is_transposed: |
|
weight_chunks = torch.chunk(gather_weight, world_size * n_fused, dim=-1) |
|
else: |
|
weight_chunks = torch.chunk(gather_weight, world_size * n_fused, dim=0) |
|
|
|
reordered_chunk_list = [] |
|
for i in range(n_fused): |
|
reordered_chunk_list.extend(weight_chunks[i::n_fused]) |
|
|
|
if is_transposed: |
|
reordered_gather_weight = torch.cat(reordered_chunk_list, dim=-1) |
|
else: |
|
reordered_gather_weight = torch.cat(reordered_chunk_list, dim=0) |
|
return reordered_gather_weight |
|
|
|
|
|
class GPT2FusedLinearConv1D_Col(ParallelModule): |
|
r"""Linear layer with column parallelism. |
|
|
|
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along |
|
its second dimension as :math:`A = [A_1, ..., A_p]`. This layer is used to fit `Conv1D` layer (Fused QKV) in gpt2 of huggingface. |
|
|
|
Args: |
|
in_features (int): size of each input sample. |
|
out_features (int): size of each output sample. |
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. |
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None. |
|
device (`torch.device`): The device of parameters, defaults to None. |
|
n_fused (int): The number items fused, defaults to 3 (QKV). |
|
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None. |
|
seq_parallel_mode (str): If set to ``None``, it will not use sequence parallel, otherwise will use corresponding mode of sequence parallel, defaults to None. |
|
gather_output (bool, optional): If true, call all-gather on output and make Y available |
|
to all GPUs, otherwise, every GPU will have its output |
|
which is :math:`Y_i = XA_i`, defaults to False |
|
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer, |
|
which is preserved for kernel fusion, defaults to False |
|
weight_initializer (`typing.Callable`): |
|
The initializer of weight, defaults to kaiming uniform initializer. |
|
bias_initializer (`typing.Callable`): |
|
The initializer of bias, defaults to xavier uniform initializer. |
|
|
|
More details about ``initializer`` please refer to |
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
bias: bool = True, |
|
dtype: torch.dtype = None, |
|
device: torch.device = None, |
|
process_group: ProcessGroup = None, |
|
async_communication: bool = False, |
|
gather_output: bool = False, |
|
seq_parallel_mode: str = None, |
|
overlap: bool = False, |
|
skip_bias_add: bool = False, |
|
n_fused: int = 3, |
|
weight: Optional[Parameter] = None, |
|
bias_: Optional[Parameter] = None, |
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), |
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), |
|
fp8_communication: bool = False, |
|
): |
|
super().__init__() |
|
|
|
# Keep input parameters |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.gather_output = gather_output |
|
self.seq_parallel_mode = seq_parallel_mode |
|
self.overlap = overlap |
|
self.skip_bias_add = skip_bias_add |
|
self.device = device |
|
self.n_fused = n_fused |
|
self.process_group = process_group |
|
self.async_communication = async_communication |
|
self.fp8_communication = fp8_communication |
|
|
|
if skip_bias_add and not bias: |
|
raise ValueError("cannot skip bias addition if bias is None") |
|
|
|
# offset the seed with randomizer index and rank |
|
seed = torch.random.initial_seed() |
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group) |
|
|
|
# sanity check |
|
if weight is not None: |
|
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None" |
|
else: |
|
assert bias_ is None, "bias_ must be None if weight is None" |
|
|
|
# Parameters. |
|
if weight is None: |
|
# Initialize weight. |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
self.weight = Parameter(torch.empty(self.in_features, self.out_features, **factory_kwargs)) |
|
else: |
|
weight.data = weight.data.to(device=device, dtype=dtype) |
|
self.weight = weight |
|
|
|
def shard_fn(tensor): |
|
return split_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, True) |
|
|
|
def gather_fn(tensor): |
|
return gather_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, True) |
|
|
|
if not is_customized_distributed_tensor(self.weight): |
|
with torch.no_grad(): |
|
sharded_weight = distribute_tensor_with_customization(self.weight.data, shard_fn, gather_fn) |
|
customized_distributed_tensor_to_existing_param(sharded_weight, self.weight) |
|
|
|
if bias: |
|
if bias_ is None: |
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) |
|
else: |
|
bias_.data = bias_.data.to(device=device, dtype=dtype) |
|
self.bias = bias_ |
|
if not is_customized_distributed_tensor(self.bias): |
|
with torch.no_grad(): |
|
sharded_bias = distribute_tensor_with_customization(self.bias.data, shard_fn, gather_fn) |
|
customized_distributed_tensor_to_existing_param(sharded_bias, self.bias) |
|
else: |
|
self.bias = None |
|
|
|
if weight is None: |
|
# init weights |
|
self.reset_parameters(weight_initializer, bias_initializer) |
|
|
|
@staticmethod |
|
def from_native_module( |
|
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs |
|
) -> ParallelModule: |
|
r""" |
|
Convert a huggingface layer `Conv1D` in gpt2 to a parallelized linear layer. |
|
|
|
Args: |
|
module (`nn.Linear`): The module to be converted. |
|
process_group (`Union[ProcessGroup, List[ProcessGroup]]`): The process group to be used for weight sharding and communication. |
|
n_fused (int): The number of layers to be fused. In GPT2, Q,K,V are fused in one weight. |
|
""" |
|
LazyInitContext.materialize(module) |
|
# get the attributes |
|
in_features = module.weight.shape[0] |
|
out_features = module.weight.shape[1] |
|
bias = module.bias is not None |
|
device = module.weight.device |
|
|
|
# ensure only one process group is passed |
|
if isinstance(process_group, (list, tuple)): |
|
assert len(process_group) == 1, f"Expected only one process group, got {len(process_group)}." |
|
process_group = process_group[0] |
|
|
|
tp_size = dist.get_world_size(process_group) |
|
if out_features < tp_size: |
|
return module |
|
|
|
if out_features % tp_size != 0: |
|
raise ValueError( |
|
f"The size of out_features:{out_features} is not integer multiples of tensor parallel size: {tp_size}!" |
|
) |
|
|
|
linear_1d = GPT2FusedLinearConv1D_Col( |
|
in_features=in_features, |
|
out_features=out_features, |
|
bias=bias, |
|
device=device, |
|
process_group=process_group, |
|
weight=module.weight, |
|
bias_=module.bias, |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
return linear_1d |
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None: |
|
with self.randomizer.fork_rng(enable_cpu=True): |
|
fan_in, fan_out = self.in_features, self.out_features |
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) |
|
if self.bias is not None: |
|
bias_initializer(self.bias, fan_in=fan_in) |
|
|
|
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]: |
|
assert ( |
|
input_.shape[-1] == self.weight.shape[0] |
|
), "Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.".format( |
|
input_.shape, self.weight.shape, self.weight.shape[-1] |
|
) |
|
|
|
# Matrix multiply. |
|
bias = self.bias if not self.skip_bias_add else None |
|
|
|
if self.seq_parallel_mode is None: |
|
# Set up backprop all-reduce. |
|
input_parallel = reduce_backward(input_, self.process_group, fp8_communication=self.fp8_communication) |
|
output_parallel = matmul_with_async_comm( |
|
input_parallel, |
|
self.weight, |
|
bias, |
|
self.process_group, |
|
self.async_communication, |
|
fp8_communication=self.fp8_communication, |
|
) |
|
elif self.seq_parallel_mode == "split_gather": |
|
input_parallel = input_ |
|
output_parallel = matmul_gather_forward_reducescatter_backward( |
|
input_parallel, |
|
self.weight, |
|
bias, |
|
self.process_group, |
|
True, |
|
1, |
|
self.overlap, |
|
fp8_communication=self.fp8_communication, |
|
) |
|
elif self.seq_parallel_mode == "ring": |
|
input_parallel = input_ |
|
output_parallel = matmul_gather_forward_reducescatter_backward( |
|
input_parallel, self.weight, bias, self.process_group, True, 1, self.overlap, True |
|
) |
|
|
|
if self.gather_output: |
|
# All-gather across the partitions. |
|
output = gather_forward_split_backward( |
|
output_parallel, dim=-1, process_group=self.process_group, fp8_communication=self.fp8_communication |
|
) |
|
else: |
|
output = output_parallel |
|
|
|
if self.skip_bias_add: |
|
return output, self.bias |
|
else: |
|
return output |
|
|
|
|
|
class GPT2FusedLinearConv1D_Row(ParallelModule): |
|
r"""Linear layer with row parallelism. |
|
This layer is used to fit `Conv1D` layer (Fused QKV) in gpt2 of huggingface. |
|
|
|
Args: |
|
in_features (int): size of each input sample. |
|
out_features (int): size of each output sample. |
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. |
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None. |
|
parallel_input (bool): If set to ``True``, it's assumed that the input is split, defaults to False. |
|
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer, |
|
seq_parallel_mode (str): If set to ``None``, it will not use sequence parallel, otherwise will use corresponding mode of sequence parallel, defaults to None. |
|
which is preserved for kernel fusion, defaults to False |
|
weight_initializer (:class:`typing.Callable`, optional): |
|
The initializer of weight, defaults to kaiming uniform initializer. |
|
bias_initializer (:class:`typing.Callable`, optional): |
|
The initializer of bias, defaults to xavier uniform initializer. |
|
|
|
More details about ``initializer`` please refer to |
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
bias: bool = True, |
|
dtype: torch.dtype = None, |
|
device: torch.device = None, |
|
process_group: ProcessGroup = None, |
|
seq_parallel_mode: str = None, |
|
parallel_input: bool = True, |
|
skip_bias_add: bool = False, |
|
weight: Optional[Parameter] = None, |
|
bias_: Optional[Parameter] = None, |
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), |
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), |
|
stream_chunk_num: int = 1, |
|
fp8_communication: bool = False, |
|
): |
|
super().__init__() |
|
|
|
self.stream_chunk_num = stream_chunk_num |
|
|
|
# Keep input parameters |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.parallel_input = parallel_input |
|
self.skip_bias_add = skip_bias_add |
|
self.process_group = process_group |
|
self.seq_parallel_mode = seq_parallel_mode |
|
self.num_partitions = dist.get_world_size(self.process_group) |
|
self.fp8_communication = fp8_communication |
|
|
|
if skip_bias_add and not bias: |
|
raise ValueError("cannot skip bias addition if bias is None") |
|
|
|
# offset the seed with randomizer index and rank |
|
seed = torch.random.initial_seed() |
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group) |
|
|
|
# Divide the weight matrix along the last dimension. |
|
self.input_size_per_partition = divide(in_features, self.num_partitions) |
|
|
|
# sanity check |
|
if weight is not None: |
|
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None" |
|
else: |
|
assert bias_ is None, "bias_ must be None if weight is None" |
|
|
|
# Parameters. |
|
if weight is None: |
|
# Initialize weight. |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
self.weight = Parameter(torch.empty(self.in_features, self.out_features, **factory_kwargs)) |
|
else: |
|
weight.data = weight.data.to(device=device, dtype=dtype) |
|
self.weight = weight |
|
if not is_distributed_tensor(self.weight): |
|
sharded_weight = shard_rowwise(self.weight.data, self.process_group) |
|
sharded_tensor_to_existing_param(sharded_weight, self.weight) |
|
|
|
if self.stream_chunk_num > 1: |
|
# TODO() work for inference only |
|
self.chunk_weight() |
|
if bias: |
|
if bias_ is None: |
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) |
|
else: |
|
bias_.data = bias_.data.to(device=device, dtype=dtype) |
|
self.bias = bias_ |
|
else: |
|
self.bias = None |
|
|
|
if weight is None: |
|
# init weights |
|
self.reset_parameters(weight_initializer, bias_initializer) |
|
|
|
@staticmethod |
|
def from_native_module( |
|
module: nn.Linear, process_group: Union[ProcessGroup, List[ProcessGroup]], *args, **kwargs |
|
) -> ParallelModule: |
|
r""" |
|
Convert a native PyTorch linear layer to a parallelized linear layer. |
|
""" |
|
LazyInitContext.materialize(module) |
|
# get the attributes |
|
in_features = module.weight.shape[0] |
|
out_features = module.weight.shape[1] |
|
bias = module.bias is not None |
|
device = module.weight.device |
|
|
|
# ensure only one process group is passed |
|
if isinstance(process_group, (list, tuple)): |
|
assert len(process_group) == 1, f"Expected only one process group, got {len(process_group)}." |
|
process_group = process_group[0] |
|
|
|
tp_size = dist.get_world_size(process_group) |
|
if in_features < tp_size: |
|
return module |
|
|
|
if in_features % tp_size != 0: |
|
raise ValueError( |
|
f"The size of in_features:{in_features} is not integer multiples of tensor parallel size: {tp_size}!" |
|
) |
|
|
|
linear_1d = GPT2FusedLinearConv1D_Row( |
|
in_features=in_features, |
|
out_features=out_features, |
|
bias=bias, |
|
device=device, |
|
process_group=process_group, |
|
weight=module.weight, |
|
bias_=module.bias, |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
return linear_1d |
|
|
|
def chunk_weight(self): |
|
self.weight_list = torch.chunk(self.weight, self.stream_chunk_num, dim=0) |
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None: |
|
with self.randomizer.fork_rng(enable_cpu=True): |
|
fan_in, fan_out = self.in_features, self.out_features |
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) |
|
|
|
if self.bias is not None: |
|
bias_initializer(self.bias, fan_in=fan_in) |
|
if self.process_group is None: |
|
src_rank = 0 |
|
else: |
|
src_rank = dist.distributed_c10d._get_global_rank(self.process_group, 0) |
|
|
|
origin_device = self.bias.device |
|
self.bias.data = self.bias.cuda() |
|
dist.broadcast(self.bias, src=src_rank, group=self.process_group) |
|
self.bias.data = self.bias.to(origin_device) |
|
|
|
def forward(self, input_: Tensor) -> Tensor: |
|
# Set up backprop all-reduce. |
|
if self.parallel_input: |
|
assert ( |
|
input_.shape[-1] == self.weight.shape[0] |
|
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format( |
|
input_.shape, self.weight.shape, self.weight.shape[0] |
|
) |
|
input_ = input_ |
|
else: |
|
assert ( |
|
divide(input_.shape[-1], self.num_partitions) == self.weight.shape[0] |
|
), "Invalid shapes in Linear1D_Row forward: input={}, weight={}. Expected last dim of input {}.".format( |
|
input_.shape, self.weight.shape, self.weight.shape[0] * self.num_partitions |
|
) |
|
input_ = split_forward_gather_backward( |
|
input_, dim=-1, process_group=self.process_group, fp8_communication=self.fp8_communication |
|
) |
|
|
|
if self.stream_chunk_num > 1: |
|
if self.training: |
|
raise RuntimeError("use stream_chunk_num=1 in Linear1D_Row for training!") |
|
with torch.no_grad(): |
|
output_parallel_list = [None for i in range(self.stream_chunk_num)] |
|
handle_list = [] |
|
for i in range(self.stream_chunk_num): |
|
output_parallel_list[i] = torch.matmul(input_, self.weight_list[i]) |
|
handle = torch.distributed.all_reduce( |
|
output_parallel_list[i], group=self.process_group, async_op=True |
|
) |
|
handle_list.append(handle) |
|
# output_parallel_list[i] = reduce_input(output_parallel_list[i], ParallelMode.PARALLEL_1D) |
|
for handle in handle_list: |
|
handle.wait() |
|
output = torch.cat(output_parallel_list, dim=-1) |
|
else: |
|
if self.seq_parallel_mode is None: |
|
output_parallel = torch.matmul(input_, self.weight) |
|
output = reduce_forward(output_parallel, self.process_group, self.fp8_communication) |
|
elif self.seq_parallel_mode == "split_gather": |
|
output_parallel = torch.matmul(input_, self.weight) |
|
output = reducescatter_forward_gather_backward( |
|
output_parallel, |
|
self.process_group, |
|
1, |
|
self.fp8_communication, |
|
) |
|
elif self.seq_parallel_mode == "ring": |
|
output_parallel = torch.matmul(input_, self.weight) |
|
output = reducescatter_forward_gather_backward( |
|
output_parallel, self.process_group, 1, self.fp8_communication |
|
) |
|
|
|
if not self.skip_bias_add: |
|
if self.bias is not None: |
|
output = output + self.bias |
|
return output |
|
else: |
|
return output, self.bias |
|
|
|
|
|
# ==================================== |
|
# For Fused torch.nn.Linear |
|
# ==================================== |
|
|
|
|
|
class FusedLinear1D_Col(ParallelModule): |
|
r"""Fused Linear layer with column parallelism. |
|
|
|
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along |
|
its second dimension as :math:`A = [A_1, ..., A_p]`. This layer is used to fit `torch.nn.Linear` layer (Fused QKV) in normal torch layer of huggingface, like SAM. |
|
|
|
Args: |
|
in_features (int): size of each input sample. |
|
out_features (int): size of each output sample. |
|
bias (bool, optional): If set to ``False``, the layer will not learn an additive bias, defaults to ``True``. |
|
dtype (`torch.dtype`): The dtype of parameters, defaults to None. |
|
device (`torch.device`): The device of parameters, defaults to None. |
|
n_fused (int): The number items fused, defaults to 3 (QKV). |
|
process_group (`torch.distributed.ProcessGroup`): The process group to be used for weight sharding and communication, defaults to None. |
|
gather_output (bool, optional): If true, call all-gather on output and make Y available |
|
to all GPUs, otherwise, every GPU will have its output |
|
which is :math:`Y_i = XA_i`, defaults to False |
|
skip_bias_add (bool): If set to ``True``, it will skip bias add for linear layer, |
|
which is preserved for kernel fusion, defaults to False |
|
weight_initializer (`typing.Callable`): |
|
The initializer of weight, defaults to kaiming uniform initializer. |
|
bias_initializer (`typing.Callable`): |
|
The initializer of bias, defaults to xavier uniform initializer. |
|
|
|
More details about ``initializer`` please refer to |
|
`init <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/nn/init.py>`_. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_features: int, |
|
out_features: int, |
|
bias: bool = True, |
|
dtype: torch.dtype = None, |
|
device: torch.device = None, |
|
process_group: ProcessGroup = None, |
|
async_communication: bool = False, |
|
gather_output: bool = False, |
|
skip_bias_add: bool = False, |
|
n_fused: int = 3, |
|
weight: Optional[Parameter] = None, |
|
bias_: Optional[Parameter] = None, |
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)), |
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1), |
|
): |
|
super().__init__() |
|
# Keep input parameters |
|
self.in_features = in_features |
|
self.out_features = out_features |
|
self.gather_output = gather_output |
|
self.skip_bias_add = skip_bias_add |
|
self.device = device |
|
self.n_fused = n_fused |
|
self.process_group = process_group |
|
self.async_communication = async_communication |
|
|
|
if skip_bias_add and not bias: |
|
raise ValueError("cannot skip bias addition if bias is None") |
|
|
|
# offset the seed with randomizer index and rank |
|
seed = torch.random.initial_seed() |
|
self.randomizer = create_randomizer_with_offset(seed, process_group=self.process_group) |
|
|
|
# sanity check |
|
if weight is not None: |
|
assert not bias or bias_ is not None, "bias_ must be provided if bias is True when weight is not None" |
|
else: |
|
assert bias_ is None, "bias_ must be None if weight is None" |
|
|
|
# Parameters. |
|
if weight is None: |
|
# Initialize weight. |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
self.weight = Parameter(torch.empty(self.out_features, self.in_features, **factory_kwargs)) |
|
else: |
|
weight.data = weight.data.to(device=device, dtype=dtype) |
|
self.weight = weight |
|
|
|
def shard_fn(tensor): |
|
return split_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, False) |
|
|
|
def gather_fn(tensor): |
|
return gather_fused_qkv_in_gpt2_style(tensor, self.n_fused, self.process_group, False) |
|
|
|
if not is_customized_distributed_tensor(self.weight): |
|
with torch.no_grad(): |
|
sharded_weight = distribute_tensor_with_customization(self.weight.data, shard_fn, gather_fn) |
|
customized_distributed_tensor_to_existing_param(sharded_weight, self.weight) |
|
|
|
if bias: |
|
if bias_ is None: |
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs)) |
|
else: |
|
bias_.data = bias_.data.to(device=device, dtype=dtype) |
|
self.bias = bias_ |
|
if not is_customized_distributed_tensor(self.bias): |
|
with torch.no_grad(): |
|
sharded_bias = distribute_tensor_with_customization(self.bias.data, shard_fn, gather_fn) |
|
customized_distributed_tensor_to_existing_param(sharded_bias, self.bias) |
|
else: |
|
self.bias = None |
|
|
|
if weight is None: |
|
# init weights |
|
self.reset_parameters(weight_initializer, bias_initializer) |
|
|
|
@staticmethod |
|
def from_native_module( |
|
module: nn.Module, process_group: Union[ProcessGroup, List[ProcessGroup]], n_fused: int, *args, **kwargs |
|
) -> ParallelModule: |
|
r""" |
|
Convert a fused `torch.nn.linear` layer to a parallelized linear layer. |
|
|
|
Args: |
|
module (`nn.Linear`): The module to be converted. |
|
process_group (`Union[ProcessGroup, List[ProcessGroup]]`): The process group to be used for weight sharding and communication. |
|
n_fused (int): The number of layers to be fused. In common, Q,K,V are fused in one weight. |
|
""" |
|
LazyInitContext.materialize(module) |
|
|
|
# get the attributes |
|
in_features = module.in_features |
|
out_features = module.out_features |
|
bias = module.bias is not None |
|
device = module.weight.device |
|
|
|
# ensure only one process group is passed |
|
if isinstance(process_group, (list, tuple)): |
|
assert len(process_group) == 1, f"Expected only one process group, got {len(process_group)}." |
|
process_group = process_group[0] |
|
|
|
linear_1d = FusedLinear1D_Col( |
|
in_features=in_features, |
|
out_features=out_features, |
|
bias=bias, |
|
device=device, |
|
process_group=process_group, |
|
weight=module.weight, |
|
bias_=module.bias, |
|
*args, |
|
**kwargs, |
|
) |
|
|
|
# # TODO: copy the sharded weights |
|
# with torch.no_grad(): |
|
# sharded_weight = split_fused_qkv_in_gpt2_style(module.weight.data, |
|
# n_fused=n_fused, |
|
# process_group=process_group, |
|
# is_transposed=False) |
|
# linear_1d.weight.data.copy_(sharded_weight.data) |
|
|
|
# if bias: |
|
# sharded_bias = split_fused_qkv_in_gpt2_style(module.bias.data, |
|
# n_fused=n_fused, |
|
# process_group=process_group, |
|
# is_transposed=False) |
|
# linear_1d.bias.data.copy_(sharded_bias.data) |
|
return linear_1d |
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None: |
|
with self.randomizer.fork_rng(enable_cpu=True): |
|
fan_in, fan_out = self.in_features, self.out_features |
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out) |
|
if self.bias is not None: |
|
bias_initializer(self.bias, fan_in=fan_in) |
|
|
|
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]: |
|
assert ( |
|
input_.shape[-1] == self.weight.shape[-1] |
|
), "Invalid shapes in Linear1D_Col forward: input={}, weight={}. Expected last dim of input {}.".format( |
|
input_.shape, self.weight.shape, self.weight.shape[-1] |
|
) |
|
# Set up backprop all-reduce. |
|
# input_parallel = reduce_backward(input_, self.process_group) |
|
input_parallel = input_ |
|
|
|
# Matrix multiply. |
|
bias = self.bias if not self.skip_bias_add else None |
|
|
|
output_parallel = linear_with_async_comm(input_parallel, self.weight, bias, self.process_group, True) |
|
|
|
if self.gather_output: |
|
# All-gather across the partitions. |
|
output = gather_forward_split_backward(output_parallel, dim=-1, process_group=self.process_group) |
|
else: |
|
output = output_parallel |
|
|
|
if self.skip_bias_add: |
|
return output, self.bias |
|
else: |
|
return output
|
|
|