Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

147 lines
4.8 KiB

import torch
import triton
import triton.language as tl
@triton.jit
def prefill_cache_kernel(
cos_cache,
sin_cache,
cumsum_lengths,
cos_output,
sin_output,
cache_stride,
hidden_stride,
total_length,
HIDDEN_DIM: tl.constexpr,
N_ELEMENTS: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
):
idx0 = tl.program_id(axis=0)
idx1 = tl.program_id(axis=1)
idx = idx0 * BLOCK_SIZE + idx1
# original seq_idx and pos
cumsum_lens = tl.load(cumsum_lengths + tl.arange(0, N_ELEMENTS))
ori_seq_idx = idx - tl.max(tl.where(cumsum_lens <= idx, cumsum_lens, 0))
cos_cache_part = tl.load(
cos_cache + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, mask=idx < total_length
)
sin_cache_part = tl.load(
sin_cache + ori_seq_idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride, mask=idx < total_length
)
tl.store(
cos_output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride,
cos_cache_part,
mask=idx < total_length,
)
tl.store(
sin_output + idx * cache_stride + tl.arange(0, HIDDEN_DIM) * hidden_stride,
sin_cache_part,
mask=idx < total_length,
)
@triton.jit
def decoding_cache_kernel(
cos_cache,
sin_cache,
lengths,
cos_output,
sin_output,
cache_stride,
hidden_stride,
HIDDEN_DIM: tl.constexpr,
NUM_SEQS: tl.constexpr,
BLOCK_SIZE: tl.constexpr,
):
idx = tl.program_id(0) * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
ori_seq_idx = tl.load(lengths + idx, mask=(idx < NUM_SEQS), other=None) # [BLOCK_SIZE,]
cos_cache_part = tl.load(
cos_cache + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride,
mask=idx[:, None] < NUM_SEQS,
)
sin_cache_part = tl.load(
sin_cache + ori_seq_idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride,
mask=idx[:, None] < NUM_SEQS,
)
tl.store(
cos_output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride),
cos_cache_part,
mask=idx[:, None] < NUM_SEQS,
)
tl.store(
sin_output + (idx[:, None] * cache_stride + tl.arange(0, HIDDEN_DIM)[None, :] * hidden_stride),
sin_cache_part,
mask=idx[:, None] < NUM_SEQS,
)
def get_xine_cache(lengths: torch.Tensor, cos_cache: torch.Tensor, sin_cache: torch.Tensor, is_prompts: bool = False):
"""
Transform cos/sin cache into no pad sequence, with two different modes.
Args:
lengths: shape(num_seqs,), stores lenghth of each sequence.
cache: shape(max_rotary_position(e.g.2048), head_dim), cos/sin cache constrcuted in model.
is_prompts: bool, mark if in prefill mode.
For prefill mode:
cos/sin cache for each sequence is equal to its length.
For decoding mode:
cos/sin cache is only needed for the last token.
"""
assert cos_cache.shape[1] == sin_cache.shape[1]
_, hidden_dim = cos_cache.shape
num_seqs = lengths.numel()
if hidden_dim >= 256:
num_warps = 16
elif hidden_dim >= 128:
num_warps = 8
else:
num_warps = 4
cache_stride = cos_cache.stride(0)
hidden_stride = cos_cache.stride(1)
if is_prompts:
BLOCK_SIZE = 16
total_length = lengths.sum().item()
cumsum_lens = torch.cumsum(lengths, dim=0)
cos_output = torch.empty((total_length, hidden_dim), dtype=cos_cache.dtype, device=cos_cache.device)
sin_output = torch.empty((total_length, hidden_dim), dtype=sin_cache.dtype, device=sin_cache.device)
grid = (triton.cdiv(total_length, BLOCK_SIZE), BLOCK_SIZE)
prefill_cache_kernel[grid](
cos_cache,
sin_cache,
cumsum_lens,
cos_output,
sin_output,
cache_stride,
hidden_stride,
total_length,
HIDDEN_DIM=hidden_dim,
N_ELEMENTS=triton.next_power_of_2(num_seqs),
BLOCK_SIZE=BLOCK_SIZE,
num_warps=num_warps,
)
else:
BLOCK_SIZE = 4
nlengths = torch.as_tensor(lengths) - 1
cos_output = torch.empty((num_seqs, hidden_dim), dtype=cos_cache.dtype, device=cos_cache.device)
sin_output = torch.empty((num_seqs, hidden_dim), dtype=sin_cache.dtype, device=sin_cache.device)
grid = (triton.cdiv(num_seqs, BLOCK_SIZE),)
decoding_cache_kernel[grid](
cos_cache,
sin_cache,
nlengths,
cos_output,
sin_output,
cache_stride,
hidden_stride,
HIDDEN_DIM=hidden_dim,
NUM_SEQS=num_seqs,
BLOCK_SIZE=BLOCK_SIZE,
num_warps=num_warps,
)
return cos_output, sin_output