mirror of https://github.com/hpcaitech/ColossalAI
261 lines
9.6 KiB
Python
261 lines
9.6 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import weakref
|
|
|
|
import torch
|
|
from torch.utils.checkpoint import check_backward_validity, detach_variable
|
|
|
|
from colossalai.legacy.context.random import get_current_mode, get_states, set_mode, set_seed_states, sync_states
|
|
from colossalai.utils.device import autocast, get_current_device
|
|
|
|
|
|
def copy_to_device(obj, device):
|
|
if torch.is_tensor(obj):
|
|
# Notice:
|
|
# When in no_grad context, requires_gard is False after movement
|
|
ret = obj.to(device).detach()
|
|
ret.requires_grad = obj.requires_grad
|
|
return ret
|
|
elif isinstance(obj, list):
|
|
return [copy_to_device(i, device) for i in obj]
|
|
elif isinstance(obj, tuple):
|
|
return tuple([copy_to_device(v, device) for v in obj])
|
|
elif isinstance(obj, dict):
|
|
return {k: copy_to_device(v, device) for k, v in obj.items()}
|
|
else:
|
|
return obj
|
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, run_function, activation_offload=False, *args):
|
|
check_backward_validity(args)
|
|
ctx.run_function = run_function
|
|
ctx.activation_offload = activation_offload
|
|
ctx.device = get_current_device()
|
|
|
|
# preserve rng states
|
|
ctx.fwd_cpu_rng_state = torch.get_rng_state()
|
|
sync_states()
|
|
ctx.fwd_seed_states = get_states(copy=True)
|
|
ctx.fwd_current_mode = get_current_mode()
|
|
|
|
if hasattr(torch, "is_autocast_enabled"):
|
|
ctx.had_autocast_in_fwd = torch.is_autocast_enabled()
|
|
else:
|
|
ctx.had_autocast_in_fwd = False
|
|
|
|
if activation_offload:
|
|
inputs_cuda = copy_to_device(args, ctx.device)
|
|
else:
|
|
inputs_cuda = args
|
|
|
|
with torch.no_grad():
|
|
outputs = run_function(*inputs_cuda)
|
|
# Save non-tensor inputs in ctx, keep a placeholder None for tensors
|
|
# to be filled out during the backward.
|
|
ctx.inputs = []
|
|
ctx.tensor_indices = []
|
|
tensor_inputs = []
|
|
for i, arg in enumerate(args):
|
|
if torch.is_tensor(arg):
|
|
if activation_offload:
|
|
tensor_inputs.append(copy_to_device(arg, "cpu"))
|
|
else:
|
|
tensor_inputs.append(arg)
|
|
ctx.tensor_indices.append(i)
|
|
ctx.inputs.append(None)
|
|
else:
|
|
ctx.inputs.append(arg)
|
|
|
|
if activation_offload:
|
|
ctx.tensor_inputs = tensor_inputs
|
|
else:
|
|
ctx.save_for_backward(*tensor_inputs)
|
|
return outputs
|
|
|
|
@staticmethod
|
|
def backward(ctx, *args):
|
|
if not torch.autograd._is_checkpoint_valid():
|
|
raise RuntimeError(
|
|
"Checkpointing is not compatible with .grad() or when an `inputs` parameter is "
|
|
"passed to .backward(). Please use .backward() and do not pass its `inputs` argument."
|
|
)
|
|
# Copy the list to avoid modifying original list.
|
|
inputs = list(ctx.inputs)
|
|
tensor_indices = ctx.tensor_indices
|
|
|
|
if ctx.activation_offload:
|
|
tensors = ctx.tensor_inputs
|
|
else:
|
|
tensors = ctx.saved_tensors
|
|
|
|
# store the current states
|
|
bwd_cpu_rng_state = torch.get_rng_state()
|
|
sync_states()
|
|
bwd_seed_states = get_states(copy=True)
|
|
bwd_current_mode = get_current_mode()
|
|
|
|
# set the states to what it used to be
|
|
torch.set_rng_state(ctx.fwd_cpu_rng_state)
|
|
for parallel_mode, state in ctx.fwd_seed_states.items():
|
|
set_seed_states(parallel_mode, state)
|
|
set_mode(ctx.fwd_current_mode)
|
|
if ctx.activation_offload:
|
|
tensors = copy_to_device(tensors, ctx.device)
|
|
|
|
# Fill in inputs with appropriate saved tensors.
|
|
for i, idx in enumerate(tensor_indices):
|
|
inputs[idx] = tensors[i]
|
|
detached_inputs = detach_variable(tuple(inputs))
|
|
if ctx.had_autocast_in_fwd:
|
|
with torch.enable_grad(), autocast():
|
|
outputs = ctx.run_function(*detached_inputs)
|
|
else:
|
|
with torch.enable_grad():
|
|
outputs = ctx.run_function(*detached_inputs)
|
|
|
|
if isinstance(outputs, torch.Tensor):
|
|
outputs = (outputs,)
|
|
# recover the rng states
|
|
torch.set_rng_state(bwd_cpu_rng_state)
|
|
for parallel_mode, state in bwd_seed_states.items():
|
|
set_seed_states(parallel_mode, state)
|
|
set_mode(bwd_current_mode)
|
|
|
|
# run backward() with only tensor that requires grad
|
|
outputs_with_grad = []
|
|
args_with_grad = []
|
|
for i in range(len(outputs)):
|
|
if torch.is_tensor(outputs[i]) and outputs[i].requires_grad:
|
|
outputs_with_grad.append(outputs[i])
|
|
args_with_grad.append(args[i])
|
|
if len(outputs_with_grad) == 0:
|
|
raise RuntimeError("none of output has requires_grad=True," " this checkpoint() is not necessary")
|
|
torch.autograd.backward(outputs_with_grad, args_with_grad)
|
|
grads = tuple(inp.grad if isinstance(inp, torch.Tensor) else None for inp in detached_inputs)
|
|
return (None, None) + grads
|
|
|
|
|
|
def checkpoint(function, activation_offload, *args, use_reentrant: bool = True):
|
|
"""Checkpoint the computation while preserve the rng states, modified from Pytorch torch.utils.checkpoint.
|
|
|
|
Args:
|
|
function: Describe the forward pass function. It should know how to handle the input tuples.
|
|
activation_offload: The variable to check whether we should offload activation to cpu
|
|
args (list): Tuple containing the parameters of the function
|
|
use_reentrant: Bool type to check if we need to use_reentrant, if use_reentrant=False, there
|
|
might be more flexibility for user to define there checkpoint function
|
|
|
|
Returns:
|
|
Output of running function with provided args.
|
|
"""
|
|
if use_reentrant:
|
|
return CheckpointFunction.apply(function, activation_offload, *args)
|
|
else:
|
|
return _checkpoint_without_reentrant(
|
|
function,
|
|
activation_offload,
|
|
*args,
|
|
)
|
|
|
|
|
|
def _checkpoint_without_reentrant(function, activation_offload=False, *args):
|
|
# store rng_state
|
|
fwd_cpu_state = torch.get_rng_state()
|
|
sync_states()
|
|
fwd_seed_states = get_states(copy=True)
|
|
fwd_current_mode = get_current_mode()
|
|
|
|
# check if use autocast
|
|
if hasattr(torch, "is_autocast_enabled"):
|
|
has_autocast_in_fwd = torch.is_autocast_enabled()
|
|
else:
|
|
has_autocast_in_fwd = False
|
|
|
|
# using WeakKeyDictionary to store all the activation the first time we call unpack
|
|
storage: weakref.WeakKeyDictionary = weakref.WeakKeyDictionary()
|
|
weak_holder_list = []
|
|
|
|
# class for weakref.ref
|
|
class Holder:
|
|
pass
|
|
|
|
# return a Holder object for later unpack process
|
|
def pack(x):
|
|
res = Holder()
|
|
weak_holder_list.append(weakref.ref(res))
|
|
return res
|
|
|
|
# unpack hook
|
|
def unpack(x):
|
|
unpack_counter = 0
|
|
|
|
# re-compute all the activation inside the function when we first call unpack
|
|
if len(storage) == 0:
|
|
|
|
def inner_pack(inner):
|
|
nonlocal unpack_counter
|
|
unpack_counter += 1
|
|
|
|
# If the holder went out of scope, the SavedVariable is dead and so
|
|
# the value will never be read from the storage. Skip filling it.
|
|
if weak_holder_list[unpack_counter - 1]() is None:
|
|
return
|
|
|
|
# Use detach here to ensure we don't keep the temporary autograd
|
|
# graph created during the second forward
|
|
storage[weak_holder_list[unpack_counter - 1]()] = inner.detach()
|
|
return
|
|
|
|
def inner_unpack(packed):
|
|
raise RuntimeError("You are calling backwards on a tensor that is never exposed. Please open an issue.")
|
|
|
|
# restore rng state
|
|
torch.set_rng_state(fwd_cpu_state)
|
|
for parallel_mode, state in fwd_seed_states.items():
|
|
set_seed_states(parallel_mode, state)
|
|
set_mode(fwd_current_mode)
|
|
|
|
# reload arg into device if needed
|
|
if activation_offload:
|
|
for arg in args:
|
|
if torch.is_tensor(arg):
|
|
arg = arg.to(device=device)
|
|
|
|
# rerun forward, the inner_pack will store all the activations in storage
|
|
if has_autocast_in_fwd:
|
|
with torch.enable_grad(), autocast(), torch.autograd.graph.saved_tensors_hooks(
|
|
inner_pack, inner_unpack
|
|
):
|
|
_unused = function(*args)
|
|
else:
|
|
with torch.enable_grad(), torch.autograd.graph.saved_tensors_hooks(inner_pack, inner_unpack):
|
|
_unused = function(*args)
|
|
|
|
if x not in storage:
|
|
raise RuntimeError(
|
|
"Attempt to retrieve a tensor saved by autograd multiple times without checkpoint"
|
|
" recomputation being triggered in between, this is not currently supported. Please"
|
|
" open an issue with details on your use case so that we can prioritize adding this."
|
|
)
|
|
|
|
return storage[x]
|
|
|
|
# get device if we need to offload the activation
|
|
if activation_offload:
|
|
device = get_current_device()
|
|
|
|
# run function with pack and unpack as saved_tensors_hooks
|
|
with torch.autograd.graph.saved_tensors_hooks(pack, unpack):
|
|
output = function(*args)
|
|
|
|
# offload activation if needed
|
|
if activation_offload:
|
|
for arg in args:
|
|
if torch.is_tensor(arg):
|
|
arg = arg.to(device="cpu")
|
|
|
|
return output
|