mirror of https://github.com/hpcaitech/ColossalAI
255 lines
6.8 KiB
C++
255 lines
6.8 KiB
C++
// Adapted from turboderp exllama: https://github.com/turboderp/exllama
|
|
|
|
#include <torch/extension.h>
|
|
#include <c10/cuda/CUDAGuard.h>
|
|
#include <ATen/cuda/CUDAContext.h>
|
|
#include <cuda_runtime.h>
|
|
#include <cuda_fp16.h>
|
|
#include <cstdint>
|
|
#include <cstdio>
|
|
#include "util.cuh"
|
|
#include "tuning.h"
|
|
#include "cuda_buffers.cuh"
|
|
#include "q4_matrix.cuh"
|
|
#include "q4_matmul.cuh"
|
|
#include "column_remap.cuh"
|
|
|
|
// Check CUDA return code. We don't want to include Torch headers in the .cu files because parsing them adds almost a
|
|
// minute to the compile time on a 12900K. Also passing exceptions back to Python is super tricky, so in place of
|
|
// exceptions, CUDA functions return with a cudaError_t which we can parse and dump to the console.
|
|
|
|
void check_cuda(cudaError_t ret)
|
|
{
|
|
switch (ret)
|
|
{
|
|
case cudaSuccess:
|
|
break;
|
|
|
|
case cudaUnspecified:
|
|
printf(" **** Unspecified error\n");
|
|
TORCH_CHECK(false, "CUDA error");
|
|
break;
|
|
|
|
default:
|
|
printf(" **** CUDA error\n"); \
|
|
printf(" **** %s\n", cudaGetErrorString(ret)); \
|
|
TORCH_CHECK(false, "CUDA error"); \
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Some decluttering macros
|
|
|
|
#define STRINGIFY_(__x) #__x
|
|
#define STRINGIFY(__x) STRINGIFY_(__x)
|
|
#define TORCH_CHECK_DTYPE(__x, __dtype) TORCH_CHECK((__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
|
|
#define TORCH_CHECK_DTYPE_OPT(__x, __dtype) TORCH_CHECK((__x).device().is_meta() || (__x).dtype() == torch::__dtype, #__x " is incorrect datatype, must be " #__dtype)
|
|
#define TORCH_CHECK_SHAPES(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
|
|
#define TORCH_CHECK_SHAPES_OPT(__x, __dim_x, __y, __dim_y, __scale_y) TORCH_CHECK((__x).device().is_meta() || (__x).size(__dim_x) == (__y).size(__dim_y) * __scale_y, #__x " and " #__y " have incompatible shapes")
|
|
#define TORCH_CHECK_SHAPE_MOD(__x, __dim_x, __mod) TORCH_CHECK((__x).size(__dim_x) % __mod == 0, #__x ".shape[" STRINGIFY(__dim_x) "] must be a multiple of " STRINGIFY(__mod))
|
|
#define TORCH_CHECK_BUFFER_SIZE(__buffer, __minimum_size) TORCH_CHECK((__buffer).numel() >= __minimum_size, #__buffer " is too small")
|
|
|
|
#define TORCH_CHECK_DEVICE_INDEX(__index) \
|
|
do { \
|
|
TORCH_CHECK(__index >= 0, "no device index"); \
|
|
TORCH_CHECK(__index < CUDA_MAX_DEVICES, "invalid device index"); \
|
|
} while(0)
|
|
|
|
#define TORCH_CHECK_QUANT(__w, __w_scales, __w_zeros, __seq_g_idx, __x_map) \
|
|
do { \
|
|
TORCH_CHECK_DTYPE(__w, kInt); \
|
|
TORCH_CHECK_DTYPE(__w_scales, kHalf); \
|
|
TORCH_CHECK_DTYPE(__w_zeros, kInt); \
|
|
TORCH_CHECK_DTYPE_OPT(__seq_g_idx, kShort); \
|
|
TORCH_CHECK_DTYPE_OPT(__x_map, kInt); \
|
|
TORCH_CHECK_SHAPES_OPT(__seq_g_idx, 0, __w, 0, 2 * 8); \
|
|
TORCH_CHECK_SHAPES_OPT(__x_map, 0, __w, 0, 8); \
|
|
} while(0)
|
|
|
|
int get_groupsize(torch::Tensor w, torch::Tensor w_zeros)
|
|
{
|
|
int groupsize = w.size(0) * 8 / w_zeros.size(0);
|
|
TORCH_CHECK(groupsize * w_zeros.size(0) == w.size(0) * 8, "w.shape[-2] must be a multiple of zeros.shape[-2]")
|
|
return groupsize;
|
|
}
|
|
|
|
|
|
// Tuning parameters
|
|
|
|
ExLlamaTuning tuningParams;
|
|
|
|
void set_tuning_params
|
|
(
|
|
int matmul_recons_thd,
|
|
bool matmul_fused_remap,
|
|
bool matmul_no_half2
|
|
)
|
|
{
|
|
tuningParams.matmul_recons_thd = matmul_recons_thd;
|
|
tuningParams.matmul_fused_remap = matmul_fused_remap;
|
|
tuningParams.matmul_no_half2 = matmul_no_half2;
|
|
}
|
|
|
|
|
|
// Release all unmanaged objects allocated by the extension
|
|
|
|
void cleanup()
|
|
{
|
|
cleanup_buffers_cuda();
|
|
g_q4_free_matrices();
|
|
}
|
|
|
|
|
|
// Prepare buffers for forward pass
|
|
|
|
void prepare_buffers
|
|
(
|
|
torch::Device device,
|
|
torch::Tensor temp_state,
|
|
torch::Tensor temp_dq
|
|
)
|
|
{
|
|
int device_index = device.index();
|
|
TORCH_CHECK_DEVICE_INDEX(device_index);
|
|
const at::cuda::OptionalCUDAGuard device_guard(device);
|
|
|
|
prepare_buffers_cuda
|
|
(
|
|
device_index,
|
|
// buffer size used for sanity checks
|
|
temp_state.numel(),
|
|
(half*) temp_state.data_ptr(),
|
|
(half*) temp_dq.data_ptr()
|
|
);
|
|
}
|
|
|
|
|
|
// Create Q4Matrix, return handle
|
|
|
|
uintptr_t make_q4
|
|
(
|
|
torch::Tensor qweight,
|
|
torch::Tensor qzeros,
|
|
torch::Tensor scales,
|
|
torch::Tensor g_idx,
|
|
int device
|
|
)
|
|
{
|
|
TORCH_CHECK_DTYPE(qweight, kInt);
|
|
TORCH_CHECK_DTYPE(qzeros, kInt);
|
|
TORCH_CHECK_DTYPE(scales, kHalf);
|
|
TORCH_CHECK_DTYPE_OPT(g_idx, kInt);
|
|
TORCH_CHECK_SHAPES(qweight, 1, qzeros, 1, 8);
|
|
TORCH_CHECK_SHAPES(scales, 1, qweight, 1, 1);
|
|
TORCH_CHECK_SHAPES(qzeros, 0, scales, 0, 1);
|
|
|
|
int width = qweight.size(1);
|
|
int height = qweight.size(0) * 8;
|
|
int groups = qzeros.size(0);
|
|
|
|
Q4Matrix* m = new Q4Matrix
|
|
(
|
|
height,
|
|
width,
|
|
groups,
|
|
|
|
(uint32_t*) qweight.data_ptr(),
|
|
(uint32_t*) qzeros.data_ptr(),
|
|
(half*) scales.data_ptr(),
|
|
g_idx.device().is_meta() ? NULL : (uint32_t*) g_idx.data_ptr(),
|
|
|
|
device
|
|
);
|
|
|
|
g_q4_keep_matrix(m);
|
|
return reinterpret_cast<uintptr_t> (m);
|
|
}
|
|
|
|
|
|
// Matmul half @ quant -> half
|
|
|
|
void q4_matmul
|
|
(
|
|
torch::Tensor x,
|
|
uintptr_t w,
|
|
torch::Tensor out
|
|
)
|
|
{
|
|
Q4Matrix* wm = reinterpret_cast<Q4Matrix*> (w);
|
|
|
|
TORCH_CHECK_DTYPE(x, kHalf);
|
|
TORCH_CHECK_DTYPE(out, kHalf);
|
|
TORCH_CHECK_SHAPES(x, 0, out, 0, 1);
|
|
TORCH_CHECK(wm->height == x.size(-1), "x and w have incompatible shapes")
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
|
|
|
int x_height = x.size(0);
|
|
|
|
if (tuningParams.matmul_recons_thd == 0 || x_height < tuningParams.matmul_recons_thd)
|
|
{
|
|
q4_matmul_cuda
|
|
(
|
|
&tuningParams,
|
|
(half*) x.data_ptr(),
|
|
x_height,
|
|
wm,
|
|
(half*) out.data_ptr()
|
|
);
|
|
}
|
|
else
|
|
{
|
|
q4_matmul_recons_cuda
|
|
(
|
|
&tuningParams,
|
|
(half*) x.data_ptr(),
|
|
x_height,
|
|
wm,
|
|
(half*) out.data_ptr(),
|
|
at::cuda::getCurrentCUDABlasHandle()
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// Remap columns in half tensor
|
|
|
|
void column_remap
|
|
(
|
|
torch::Tensor x,
|
|
torch::Tensor x_new,
|
|
torch::Tensor x_map
|
|
)
|
|
{
|
|
TORCH_CHECK_DTYPE(x, kHalf);
|
|
TORCH_CHECK_DTYPE(x_new, kHalf);
|
|
TORCH_CHECK_DTYPE(x_map, kInt);
|
|
TORCH_CHECK_SHAPES(x_map, 0, x, 1, 1);
|
|
|
|
int height = x.size(0);
|
|
int width = x.size(1);
|
|
|
|
TORCH_CHECK_BUFFER_SIZE(x_new, height * width);
|
|
|
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
|
|
|
column_remap_cuda
|
|
(
|
|
(half*) x.data_ptr(),
|
|
(half*) x_new.data_ptr(),
|
|
height,
|
|
width,
|
|
(uint32_t*) x_map.data_ptr()
|
|
);
|
|
}
|
|
|
|
|
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
|
{
|
|
m.def("set_tuning_params", &set_tuning_params, "set_tuning_params");
|
|
m.def("prepare_buffers", &prepare_buffers, "prepare_buffers");
|
|
m.def("cleanup", &cleanup, "cleanup");
|
|
m.def("make_q4", &make_q4, "make_q4");
|
|
m.def("q4_matmul", &q4_matmul, "q4_matmul");
|
|
}
|