ColossalAI/colossalai/auto_parallel/checkpoint/operation.py

188 lines
4.8 KiB
Python

import math
from abc import ABC
from typing import List
from torch.utils._pytree import tree_map
class Chain:
def __init__(
self,
ftime: List[float],
btime: List[float],
x: List[int],
xbar: List[int],
ftmp: List[int],
btmp: List[int],
check_consistency: bool = True,
):
"""The chain is a basic linearized structure for solving the dynamic programming problem for activation checkpoint.
See paper https://hal.inria.fr/hal-02352969 for details.
Args:
ftime (List[float]): The forward time of each node.
btime (List[float]): The backward time of each node.
x (List[int]): The forward memory of each node (if save_output). Same as `a` in the paper.
xbar (List[int]): The forward memory of each node (if save_all). Same as `a_bar` in the paper.
ftmp (List[int]): The temporary forward memory of each node.
btmp (List[int]): The temporary backward memory of each node, can be used to control memory budget.
check_consistency (bool, optional): Check the lengths consistency for the `Chain`. Defaults to True.
"""
self.ftime = ftime
self.btime = btime
self.x = x
self.xbar = xbar
self.ftmp = ftmp
self.btmp = btmp
if check_consistency and not self.check_lengths():
raise AttributeError("In Chain, input lists do not have consistent lengths")
def check_lengths(self):
return (
(len(self.ftime) == len(self))
and (len(self.btime) == len(self) + 1)
and (len(self.x) == len(self) + 1)
and (len(self.ftmp) == len(self))
and (len(self.btmp) == len(self) + 1)
and (len(self.xbar) == len(self) + 1)
)
def __repr__(self):
chain_list = []
for i in range(len(self)):
chain_list.append((self.ftime[i], self.btime[i], self.x[i], self.xbar[i], self.ftmp[i], self.btmp[i]))
i = len(self)
chain_list.append((None, self.btime[i], self.x[i], self.xbar[i], None, self.btmp[i]))
return chain_list.__repr__()
def __len__(self):
return len(self.ftime)
def discretize_all(self, unit: int):
"""Discretize the chain into a list of chains according to unit size."""
discretizer = lambda val: math.ceil(val / unit)
self.x = tree_map(discretizer, self.x)
self.xbar = tree_map(discretizer, self.xbar)
self.ftmp = tree_map(discretizer, self.ftmp)
self.btmp = tree_map(discretizer, self.btmp)
class Operation(ABC):
name = "Op"
def __repr__(self) -> str:
return f"{self.name}_{self.index}"
def shift(self, value):
if type(self.index) is tuple:
self.index = tuple(x + value for x in self.index)
else:
self.index += value
class Forward(Operation):
name = "F"
def __init__(self, index):
self.index = index
def cost(self, chain: Chain):
if chain is not None:
return chain.ftime[self.index]
else:
return 1
class ForwardEnable(Forward):
name = "Fe"
class ForwardNograd(Forward):
name = "Fn"
class ForwardCheck(Forward):
name = "CF"
class Forwards(Operation):
def __init__(self, start, end):
self.index = (start, end)
def __repr__(self):
return "F_{i}->{j}".format(i=self.index[0], j=self.index[1])
def cost(self, chain: Chain):
if chain is not None:
return sum(chain.ftime[self.index[0] : self.index[1] + 1])
else:
return self.index[1] - self.index[0] + 1
def isForward(op):
return type(op) is Forward or type(op) is Forwards
class Backward(Operation):
name = "B"
def __init__(self, index):
self.index = index
def cost(self, chain: Chain):
if chain is not None:
return chain.btime[self.index]
else:
return 1
class Loss(Operation):
def __init__(self):
pass
def __repr__(self):
return "L"
def cost(self, chain):
return 0
class MemoryAccess(Operation):
name = "MA"
def __init__(self, index):
self.index = index
def cost(self, chain: Chain):
return 0
class WriteMemory(MemoryAccess):
name = "WM"
class ReadMemory(MemoryAccess):
name = "RM"
class DiscardMemory(MemoryAccess):
name = "DM"
class Sequence(list):
def __init__(self):
super().__init__()
def __repr__(self):
return repr(self.list_operations())
def list_operations(self):
op_list = []
for x in self:
if isinstance(x, Operation):
op_list.append(x)
else:
assert isinstance(x, Sequence)
op_list += x.list_operations()
return op_list