ColossalAI/model_zoo/mlp_mixer/parallel_3d/mlp_mixer.py

64 lines
2.5 KiB
Python

# modified from https://github.com/lucidrains/mlp-mixer-pytorch/blob/main/mlp_mixer_pytorch/mlp_mixer_pytorch.py
from functools import partial
from colossalai.context import ParallelMode
from colossalai.registry import MODELS
from torch import nn
from colossalai import nn as col_nn
from colossalai.nn.layer.parallel_3d._utils import get_depth_from_env
from einops.layers.torch import Rearrange, Reduce
__all__ = [
'MLPMixer',
]
class PreNormResidual(nn.Module):
def __init__(self, dim, fn, depth_3d):
super().__init__()
self.fn = fn
self.norm = col_nn.LayerNorm3D(
dim, depth_3d, ParallelMode.PARALLEL_3D_INPUT, ParallelMode.PARALLEL_3D_WEIGHT)
def forward(self, x):
return self.fn(self.norm(x)) + x
def FeedForward(dim, depth_3d, expansion_factor=4, dropout=0., dense=None):
if dense is None:
dense = partial(col_nn.Linear3D, depth=depth_3d, input_parallel_mode=ParallelMode.PARALLEL_3D_INPUT,
weight_parallel_mode=ParallelMode.PARALLEL_3D_WEIGHT)
return nn.Sequential(
dense(dim, dim * expansion_factor),
nn.GELU(),
nn.Dropout(dropout),
dense(dim * expansion_factor, dim),
nn.Dropout(dropout)
)
@MODELS.register_module
def MLPMixer(image_size, channels, patch_size, dim, depth, num_classes, expansion_factor=4, dropout=0.):
assert (image_size % patch_size) == 0, 'image must be divisible by patch size'
num_patches = (image_size // patch_size) ** 2
depth_3d = get_depth_from_env()
linear = partial(col_nn.Linear3D, depth=depth_3d, input_parallel_mode=ParallelMode.PARALLEL_3D_INPUT,
weight_parallel_mode=ParallelMode.PARALLEL_3D_WEIGHT)
norm_layer = partial(col_nn.LayerNorm3D, depth=depth_3d, input_parallel_mode=ParallelMode.PARALLEL_3D_INPUT,
weight_parallel_mode=ParallelMode.PARALLEL_3D_WEIGHT)
chan_first, chan_last = partial(nn.Conv1d, kernel_size=1), linear
return nn.Sequential(
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)',
p1=patch_size, p2=patch_size),
linear((patch_size ** 2) * channels, dim),
*[nn.Sequential(
PreNormResidual(dim, FeedForward(
num_patches, expansion_factor, dropout, chan_first)),
PreNormResidual(dim, FeedForward(
dim, expansion_factor, dropout, chan_last))
) for _ in range(depth)],
norm_layer(dim),
Reduce('b n c -> b c', 'mean'),
linear(dim, num_classes)
)